scholarly journals Uncertainty leads to persistent effects on reach representations in dorsal premotor cortex

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Brian M Dekleva ◽  
Pavan Ramkumar ◽  
Paul A Wanda ◽  
Konrad P Kording ◽  
Lee E Miller

Every movement we make represents one of many possible actions. In reaching tasks with multiple targets, dorsal premotor cortex (PMd) appears to represent all possible actions simultaneously. However, in many situations we are not presented with explicit choices. Instead, we must estimate the best action based on noisy information and execute it while still uncertain of our choice. Here we asked how both primary motor cortex (M1) and PMd represented reach direction during a task in which a monkey made reaches based on noisy, uncertain target information. We found that with increased uncertainty, neurons in PMd actually enhanced their representation of unlikely movements throughout both planning and execution. The magnitude of this effect was highly variable across sessions, and was correlated with a measure of the monkeys’ behavioral uncertainty. These effects were not present in M1. Our findings suggest that PMd represents and maintains a full distribution of potentially correct actions.

2007 ◽  
Vol 578 (2) ◽  
pp. 551-562 ◽  
Author(s):  
Giacomo Koch ◽  
Michele Franca ◽  
Hitoshi Mochizuki ◽  
Barbara Marconi ◽  
Carlo Caltagirone ◽  
...  

NeuroImage ◽  
2012 ◽  
Vol 62 (1) ◽  
pp. 500-509 ◽  
Author(s):  
Sergiu Groppa ◽  
Nicole Werner-Petroll ◽  
Alexander Münchau ◽  
Günther Deuschl ◽  
Matthew F.S. Ruschworth ◽  
...  

2015 ◽  
Vol 36 (1) ◽  
pp. 301-303 ◽  
Author(s):  
Zhen Ni ◽  
Reina Isayama ◽  
Gabriel Castillo ◽  
Carolyn Gunraj ◽  
Utpal Saha ◽  
...  

2011 ◽  
Vol 33 (2) ◽  
pp. 419-430 ◽  
Author(s):  
Sergiu Groppa ◽  
Boris H. Schlaak ◽  
Alexander Münchau ◽  
Nicole Werner-Petroll ◽  
Janin Dünnweber ◽  
...  

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9253
Author(s):  
Hai-Jiang Meng ◽  
Na Cao ◽  
Jian Zhang ◽  
Yan-Ling Pi

Background Motor information in the brain is transmitted from the dorsal premotor cortex (PMd) to the primary motor cortex (M1), where it is further processed and relayed to the spinal cord to eventually generate muscle movement. However, how information from the PMd affects M1 processing and the final output is unclear. Here, we applied intermittent theta burst stimulation (iTBS) to the PMd to alter cortical excitability not only at the application site but also at the PMd projection site of M1. We aimed to determine how PMd iTBS–altered information changed M1 processing and the corticospinal output. Methods In total, 16 young, healthy participants underwent PMd iTBS with 600 pulses (iTBS600) or sham-iTBS600. Corticospinal excitability, short-interval intracortical inhibition (SICI), and intracortical facilitation (ICF) were measured using transcranial magnetic stimulation before and up to 60 min after stimulation. Results Corticospinal excitability in M1 was significantly greater 15 min after PMd iTBS600 than that after sham-iTBS600 (p = 0.012). Compared with that after sham-iTBS600, at 0 (p = 0.014) and 15 (p = 0.037) min after iTBS600, SICI in M1 was significantly decreased, whereas 15 min after iTBS600, ICF in M1 was significantly increased (p = 0.033). Conclusion Our results suggested that projections from the PMd to M1 facilitated M1 corticospinal output and that this facilitation may be attributable in part to decreased intracortical inhibition and increased intracortical facilitation in M1. Such a facilitatory network may inform future understanding of the allocation of resources to achieve optimal motion output.


Sign in / Sign up

Export Citation Format

Share Document