intracortical facilitation
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 19)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Saša R. Filipović ◽  
Aleksandra Kačar ◽  
Sladjan Milanović ◽  
Miloš R. Ljubisavljević

Background: Although dopaminergic medication has been the foundation of Parkinson's disease (PD) therapy for decades, sensitive and specific therapeutic response biomarkers that allow for better treatment optimization are lacking.Objective: We tested whether the features of Transcranial Magnetic Stimulation-based neurophysiological measures taken off-medication are associated with dopaminergic medication-induced clinical effects.Method: Motor cortex excitability [short-latency intracortical inhibition (SICI), intracortical facilitation (ICF), short-latency afferent inhibition (SAI), and input-output (IO) curve], and plasticity [paired associative stimulation (PAS) protocol] neurophysiological measures were examined in 23 PD patients off-medication. Clinical features were quantified by the motor section of the Unified Parkinson's Disease Scale (total score and lateralized total, bradykinesia, and rigidity sub-scores), and the differences between measures off-medication and on-medication (following the usual morning dose), were determined. Total daily dopaminergic medication dose (expressed as levodopa equivalent daily dose-LEDD), was also determined.Results: SICI significantly correlated with changes in lateralized UPDRS motor and bradykinesia sub-scores, suggesting that patients with stronger basal intracortical inhibition benefit more from dopaminergic treatment than patients with weaker intracortical inhibition. Also, ICF significantly negatively correlated with LEDD, suggesting that patients with stronger intracortical facilitation require less dopaminergic medication to achieve optimal therapeutic benefit. Both associations were independent of disease severity and duration.Conclusions: The results suggest variability of (patho) physiological phenotypes related to intracortical inhibitory and facilitatory mechanisms determining clinical response to dopaminergic medication in PD. Measures of intracortical excitability may help predict patients' response to dopaminergic therapy, thus potentially providing a background for developing personalized therapy in PD.


2021 ◽  
pp. 113266
Author(s):  
Qian Ding ◽  
Huiting Cai ◽  
Manfeng Wu ◽  
Guiyuan Cai ◽  
Hongying Chen ◽  
...  

Brain ◽  
2020 ◽  
Vol 143 (11) ◽  
pp. 3408-3421 ◽  
Author(s):  
Claudia Ammann ◽  
Michele Dileone ◽  
Cristina Pagge ◽  
Valentina Catanzaro ◽  
David Mata-Marín ◽  
...  

Abstract In Parkinson’s disease, striatal dopamine depletion produces profound alterations in the neural activity of the cortico-basal ganglia motor loop, leading to dysfunctional motor output and parkinsonism. A key regulator of motor output is the balance between excitation and inhibition in the primary motor cortex, which can be assessed in humans with transcranial magnetic stimulation techniques. Despite decades of research, the functional state of cortical inhibition in Parkinson’s disease remains uncertain. Towards resolving this issue, we applied paired-pulse transcranial magnetic stimulation protocols in 166 patients with Parkinson’s disease (57 levodopa-naïve, 50 non-dyskinetic, 59 dyskinetic) and 40 healthy controls (age-matched with the levodopa-naïve group). All patients were studied OFF medication. All analyses were performed with fully automatic procedures to avoid confirmation bias, and we systematically considered and excluded several potential confounding factors such as age, gender, resting motor threshold, EMG background activity and amplitude of the motor evoked potential elicited by the single-pulse test stimuli. Our results show that short-interval intracortical inhibition is decreased in Parkinson’s disease compared to controls. This reduction of intracortical inhibition was obtained with relatively low-intensity conditioning stimuli (80% of the resting motor threshold) and was not associated with any significant increase in short-interval intracortical facilitation or intracortical facilitation with the same low-intensity conditioning stimuli, supporting the involvement of cortical inhibitory circuits. Short-interval intracortical inhibition was similarly reduced in levodopa-naïve, non-dyskinetic and dyskinetic patients. Importantly, intracortical inhibition was reduced compared to control subjects also on the less affected side (n = 145), even in de novo drug-naïve patients in whom the less affected side was minimally symptomatic (lateralized Unified Parkinson’s Disease Rating Scale part III = 0 or 1, n = 23). These results suggest that cortical disinhibition is a very early, possibly prodromal feature of Parkinson’s disease.


Author(s):  
Pierre Clos ◽  
Romuals Lepers ◽  
Yoann M. Garnier

Corticospinal excitability and particularly the balance between cortical inhibitory and excitatory processes (assessed in a muscle using transcranial magnetic stimulation), are affected by neurodegenerative pathologies or following a stroke. Non-fatiguing conventional locomotor exercise, such as cycling or walking, decreases intracortical inhibition and/or increases intracortical facilitation. These modifications notably seem to be a consequence of neurotrophic factors (e.g., brain-derived neurotrophic factors) resulting from hemodynamic solicitation. Furthermore, it can be inferred from non-invasive brain and peripheral stimulation studies that repeated activation of neural networks can endogenously shape neuroplasticity. Such mechanisms could also occur following eccentric exercises (i.e., active lengthening of the muscle), during which motor-related cortical potential is of greater magnitude and lasts longer (assessed by electroencephalography) than during concentric exercises (i.e., muscle shortening). As single-joint eccentric exercise decreased short- and long-interval intracortical inhibition and increased intracortical facilitation (assessed by paired-pulse transcranial magnetic stimulation immediately after), locomotor eccentric exercise may be even more potent by adding hemodynamic-related neuroplastic processes to endogenous processes. Besides, eccentric exercise is especially useful to develop relatively high force levels at low cardiorespiratory and perceived intensity, which can be a training goal in addition to inducing neuroplastic changes. Further studies are required to understand how neuroplasticity is 1) acutely influenced by locomotor exercise characteristics (e.g., intensity, duration), 2) modulated by an exercise-based rehabilitation program, 3) related to functional cognitive and motor outcomes relevant to pathological population.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9253
Author(s):  
Hai-Jiang Meng ◽  
Na Cao ◽  
Jian Zhang ◽  
Yan-Ling Pi

Background Motor information in the brain is transmitted from the dorsal premotor cortex (PMd) to the primary motor cortex (M1), where it is further processed and relayed to the spinal cord to eventually generate muscle movement. However, how information from the PMd affects M1 processing and the final output is unclear. Here, we applied intermittent theta burst stimulation (iTBS) to the PMd to alter cortical excitability not only at the application site but also at the PMd projection site of M1. We aimed to determine how PMd iTBS–altered information changed M1 processing and the corticospinal output. Methods In total, 16 young, healthy participants underwent PMd iTBS with 600 pulses (iTBS600) or sham-iTBS600. Corticospinal excitability, short-interval intracortical inhibition (SICI), and intracortical facilitation (ICF) were measured using transcranial magnetic stimulation before and up to 60 min after stimulation. Results Corticospinal excitability in M1 was significantly greater 15 min after PMd iTBS600 than that after sham-iTBS600 (p = 0.012). Compared with that after sham-iTBS600, at 0 (p = 0.014) and 15 (p = 0.037) min after iTBS600, SICI in M1 was significantly decreased, whereas 15 min after iTBS600, ICF in M1 was significantly increased (p = 0.033). Conclusion Our results suggested that projections from the PMd to M1 facilitated M1 corticospinal output and that this facilitation may be attributable in part to decreased intracortical inhibition and increased intracortical facilitation in M1. Such a facilitatory network may inform future understanding of the allocation of resources to achieve optimal motion output.


Sign in / Sign up

Export Citation Format

Share Document