scholarly journals Cortex-dependent recovery of unassisted hindlimb locomotion after complete spinal cord injury in adult rats

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Anitha Manohar ◽  
Guglielmo Foffani ◽  
Patrick D Ganzer ◽  
John R Bethea ◽  
Karen A Moxon

After paralyzing spinal cord injury the adult nervous system has little ability to ‘heal’ spinal connections, and it is assumed to be unable to develop extra-spinal recovery strategies to bypass the lesion. We challenge this assumption, showing that completely spinalized adult rats can recover unassisted hindlimb weight support and locomotion without explicit spinal transmission of motor commands through the lesion. This is achieved with combinations of pharmacological and physical therapies that maximize cortical reorganization, inducing an expansion of trunk motor cortex and forepaw sensory cortex into the deafferented hindlimb cortex, associated with sprouting of corticospinal axons. Lesioning the reorganized cortex reverses the recovery. Adult rats can thus develop a novel cortical sensorimotor circuit that bypasses the lesion, probably through biomechanical coupling, to partly recover unassisted hindlimb locomotion after complete spinal cord injury.

2020 ◽  
Author(s):  
Bharadwaj Nandakumar ◽  
Gary H. Blumenthal ◽  
Francois Philippe Pauzin ◽  
Karen A. Moxon

AbstractSensorimotor integration in the trunk system has been poorly studied despite its importance for examining functional recovery after neurological injury or disease. Here, we mapped the relationship between thoracic dorsal root ganglia and trunk sensory cortex (S1) to create a detailed map of the extent and internal organization of trunk primary sensory cortex, and trunk primary motor cortex (M1) and showed that both cortices are somatotopically complex structures that are larger than previously described. Surprisingly, projections from trunk S1 to trunk M1 were not anatomically organized. We found relatively weak sensorimotor integration between trunk M1 and S1 and between trunk M1 and forelimb S1 compared to extensive integration between trunk M1 and hindlimb S1 and M1. This strong trunk/hindlimb connection was identified for high intensity stimuli that activated proprioceptive pathways. To assess the implication of this integration, the responses in sensorimotor cortex were examined during a postural control task and supported sensorimotor integration between hindlimb sensory and lower trunk motor cortex. Together, these data suggest that trunk M1 is guided predominately by hindlimb proprioceptive information that reached the cortex directly via the thalamus. This unique sensorimotor integration suggests an essential role for the trunk system in postural control, and its consideration could be important for understanding studies regarding recovery of function after spinal cord injury.SignificanceThis work identifies extensive sensorimotor integration between trunk and hindlimb cortices, demonstrating that sensorimotor integration is an operational mode of the trunk cortex in intact animals. The functional role of this integration was demonstrated for postural control when the animal was subjected to lateral tilts. Furthermore, these results provide insight into cortical reorganization after spinal cord injury making clear that sensorimotor integration after SCI is an attempt to restore sensorimotor integration that existed in the intact system. These results could be used to tailor rehabilitative strategies to optimize sensorimotor integration for functional recovery.


Sign in / Sign up

Export Citation Format

Share Document