multi electrode array
Recently Published Documents


TOTAL DOCUMENTS

228
(FIVE YEARS 35)

H-INDEX

25
(FIVE YEARS 3)

Author(s):  
Erika M. Suarez ◽  
Kateřina Lepková ◽  
Maria Forsyth ◽  
Mike Y. Tan ◽  
Brian Kinsella ◽  
...  

Carbon steel pipelines used in the oil and gas industry can be susceptible to the combined presence of deposits and microorganisms, which can result in a complex phenomenon, recently termed under-deposit microbial corrosion (UDMC). UDMC and its inhibition in CO2 ambiance were investigated in real-time using a multi-electrode array (MEA) system and surface profilometry analysis. Maps from corrosion rates, galvanic currents, and corrosion potentials recorded at each microelectrode allowed the visualization of local corrosion events on the steel surface. A marine bacterium Enterobacter roggenkampii, an iron-oxidizing, nitrate-reducing microorganism, generated iron deposits on the surface that resulted in pitting corrosion under anaerobic conditions. Areas under deposits displayed anodic behavior, more negative potentials, higher corrosion rates, and pitting compared to areas outside deposits. In the presence of the organic film-forming corrosion inhibitor, 2-Mercaptopyrimidine, the marine bacterium induced local breakdown of the protective inhibitor film and subsequent pitting corrosion of carbon steel. The ability of the MEA system to locally measure self-corrosion processes, galvanic effects and, corrosion potentials across the surface demonstrated its suitability to detect, evaluate and monitor the UDMC process as well as the efficiency of corrosion inhibitors to prevent this corrosion phenomenon. This research highlights the importance of incorporating the microbial component to corrosion inhibitors evaluation to ensure chemical effectiveness in the likely scenario of deposit formation and microbial contamination in oil and gas production equipment.


2021 ◽  
Author(s):  
Mohita Tagore ◽  
Emiliano Hergenreder ◽  
Shruthy Suresh ◽  
Maayan Baron ◽  
Sarah Perlee ◽  
...  

Oncogenes can only initiate tumors in certain cellular contexts, which is referred to as oncogenic competence. In melanoma, whether cells in the microenvironment can endow such competence remains unclear. Using a combination of zebrafish transgenesis coupled with human tissues, we demonstrate that GABAergic signaling between keratinocytes and melanocytes promotes melanoma initiation by BRAFV600E. GABA is synthesized in melanoma cells, which then acts on GABA-A receptors on keratinocytes. Electron microscopy demonstrates synapse-like structures between keratinocytes and melanoma cells, and multi-electrode array analysis shows that GABA acts to inhibit electrical activity in melanoma/keratinocyte co-cultures. Genetic and pharmacologic perturbation of GABA synthesis abrogates melanoma initiation in vivo. These data suggest that electrical activity across the skin microenvironment determines the ability of oncogenes to initiate melanoma.


2021 ◽  
Author(s):  
Joseph Sombeck ◽  
Juliet Heye ◽  
Karthik Kumaravelu ◽  
Stefan M Goetz ◽  
Angel V Peterchev ◽  
...  

Objective: Persons with tetraplegia can use brain-machine interfaces to make visually guided reaches with robotic arms. Without somatosensory feedback, these movements will likely be slow and imprecise, like those of persons who retain movement but have lost proprioception. Intracortical microstimulation (ICMS) has promise for providing artificial somatosensory feedback. If ICMS can mimic naturally occurring neural activity, afferent interfaces may be more informative and easier to learn than interfaces that evoke unnaturalistic activity. To develop such biomimetic stimulation patterns, it is important to characterize the responses of neurons to ICMS. Approach: Using a Utah multi-electrode array, we recorded activity evoked by single pulses, and short (~0.2 s) and long (~4 s) trains of ICMS at a wide range of amplitudes and frequencies. As the electrical artifact caused by ICMS typically prevents recording for many milliseconds, we deployed a custom rapid-recovery amplifier with nonlinear gain to limit signal saturation on the stimulated electrode. Across all electrodes after stimulation, we removed the remaining slow return to baseline with acausal high-pass filtering of time-reversed recordings. With these techniques, we could record ~0.7 ms after stimulation offset even on the stimulated electrode. Main results: We recorded likely transsynaptically-evoked activity as early as ~0.7 ms after single pulses of stimulation that was immediately followed by suppressed neural activity lasting 10-150 ms. Instead of this long-lasting inhibition, neurons increased their firing rates for ~100 ms after trains. During long trains, the evoked response on the stimulated electrode decayed rapidly while the response was maintained on non-stimulated channels. Significance: The detailed description of the spatial and temporal response to ICMS can be used to better interpret results from experiments that probe circuit connectivity or function of cortical areas. These results can also contribute to the design of stimulation patterns to improve afferent interfaces for artificial sensory feedback.


2021 ◽  
Vol 11 (18) ◽  
pp. 8278
Author(s):  
Lujia Yang ◽  
Zhenping Ma ◽  
Yufeng Zheng ◽  
Xiaona Wang ◽  
Yi Huang ◽  
...  

A multi-electrode array sensor was developed to study the corrosion behaviors of carbon steel weldments and the effectiveness of the NaNO2 inhibitor in carbonated pore solution. The sensor can simulate a complete weldment, and the measurement results can match well with the coupon immersion test. The galvanic corrosion between the weld area, heat-affected area, and base metal area, as well as the effect of nitrite corrosion inhibitor on the weld area, were observed by measuring the open circuit potential, coupling potential, and galvanic current. The results show that corrosion is likely to happen around the weld metal area and its adjacent heat-affected zone. The intensive galvanic currents can accelerate the localized corrosion, while NaNO2 can inhibit it.


2021 ◽  
Vol 2 (2) ◽  
pp. 100442
Author(s):  
Kevin M. Manz ◽  
Justin K. Siemann ◽  
Douglas G. McMahon ◽  
Brad A. Grueter

2021 ◽  
Vol 13 ◽  
Author(s):  
Nadja Mannal ◽  
Katharina Kleiner ◽  
Michael Fauler ◽  
Antonios Dougalis ◽  
Christina Poetschke ◽  
...  

Dopaminergic (DA) midbrain neurons within the substantia nigra (SN) display an autonomous pacemaker activity that is crucial for dopamine release and voluntary movement control. Their progressive degeneration is a hallmark of Parkinson's disease. Their metabolically demanding activity-mode affects Ca2+ homeostasis, elevates metabolic stress, and renders SN DA neurons particularly vulnerable to degenerative stressors. Accordingly, their activity is regulated by complex mechanisms, notably by dopamine itself, via inhibitory D2-autoreceptors and the neuroprotective neuronal Ca2+ sensor NCS-1. Analyzing regulation of SN DA neuron activity-pattern is complicated by their high vulnerability. We studied this activity and its control by dopamine, NCS-1, and glucose with extracellular multi-electrode array (MEA) recordings from midbrain slices of juvenile and adult mice. Our tailored MEA- and spike sorting-protocols allowed high throughput and long recording times. According to individual dopamine-responses, we identified two distinct SN cell-types, in similar frequency: dopamine-inhibited and dopamine-excited neurons. Dopamine-excited neurons were either silent in the absence of dopamine, or they displayed pacemaker-activities, similar to that of dopamine-inhibited neurons. Inhibition of pacemaker-activity by dopamine is typical for SN DA neurons, and it can undergo prominent desensitization. We show for adult mice, that the number of SN DA neurons with desensitized dopamine-inhibition was increased (~60–100%) by a knockout of NCS-1, or by prevention of NCS-1 binding to D2-autoreceptors, while time-course and degrees of desensitization were not altered. The number of neurons with desensitized D2-responses was also higher (~65%) at high glucose-levels (25 mM), compared to lower glucose (2.5 mM), while again desensitization-kinetics were unaltered. However, spontaneous firing-rates were significantly higher at high glucose-levels (~20%). Moreover, transient glucose-deprivation (1 mM) induced a fast and fully-reversible pacemaker frequency reduction. To directly address and quantify glucose-sensing properties of SN DA neurons, we continuously monitored their electrical activity, while altering extracellular glucose concentrations stepwise from 0.5 mM up to 25 mM. SN DA neurons were excited by glucose, with EC50 values ranging from 0.35 to 2.3 mM. In conclusion, we identified a novel, common subtype of dopamine-excited SN neurons, and a complex, joint regulation of dopamine-inhibited neurons by dopamine and glucose, within the range of physiological brain glucose-levels.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Myung Uk Park ◽  
Yonghee Bae ◽  
Kyo-Seok Lee ◽  
Jun Ho Song ◽  
Sun-Mi Lee ◽  
...  

Three type of modular networks are constructed using polydimethylsiloxane (PDMS) microstructures fabricated on a multi-electrode array (MEA) without transfer to investigate how neuronal activities are affected by modular network structure.


Sign in / Sign up

Export Citation Format

Share Document