scholarly journals A selective role for ventromedial subthalamic nucleus in inhibitory control

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Benjamin Pasquereau ◽  
Robert S Turner

The subthalamic nucleus (STN) is hypothesized to play a central role in the rapid stopping of movement in reaction to a stop signal. Single-unit recording evidence for such a role is sparse, however, and it remains uncertain how that role relates to the disparate functions described for anatomic subdivisions of the STN. Here we address that gap in knowledge using non-human primates and a task that distinguishes reactive and proactive action inhibition, switching and skeletomotor functions. We found that specific subsets of STN neurons have activity consistent with causal roles in reactive action stopping or switching. Importantly, these neurons were strictly segregated to a ventromedial region of STN. Neurons in other subdivisions encoded task dimensions such as movement per se and proactive control. We propose that the involvement of STN in reactive control is restricted to its ventromedial portion, further implicating this STN subdivision in impulse control disorders.

2021 ◽  
Author(s):  
Indrajeet Indrajeet ◽  
Cyril Atkinson-Clement ◽  
Yulia Worbe ◽  
Pierre Pouget ◽  
Supriya Ray

Tourette disorder (TD) is characterized by tics, which are sudden repetitive involuntary movements or vocalizations. Deficits in inhibitory control in TD patients remain inconclusive from the traditional method of estimating the ability to stop an impending action, which requires careful interpretation of a parameter derived from race model. One possible explanation for these inconsistencies is that race model's assumptions are often violated. Here, we used a pair of metrics derived from a recent alternative model to address why stopping performance in TD patients is unaffected by impairments in neural circuitry. These new metrics distinguish between proactive and reactive inhibitory control and estimate them separately. When these metrics were contrasted with healthy controls (HC), we identified robust deficits in reactive control in TD patients, but not in proactive control. The patient population exhibited difficulty in slowing down the speed of movement planning, which they compensated by their intact ability of procrastination.


2020 ◽  
Vol 16 ◽  
pp. 174480692092785 ◽  
Author(s):  
Mayumi Sonekatsu ◽  
Hiroshi Yamada ◽  
Jianguo G Gu

An electrophysiological technique that can record nerve impulses from a single nerve fiber is indispensable for studying modality-specific sensory receptors such as low threshold mechanoreceptors, thermal receptors, and nociceptors. The teased-fiber single-unit recording technique has long been used to resolve impulses that are likely to be from a single nerve fiber. The teased-fiber single-unit recording technique involves tedious nerve separation procedures, causes nerve fiber impairment, and is not a true single-fiber recording method. In the present study, we describe a new and true single-fiber recording technique, the pressure-clamped single-fiber recording method. We have applied this recording technique to mouse whisker hair follicle preparations with attached whisker afferents as well as to skin-nerve preparations made from mouse hindpaw skin and saphenous nerves. This new approach can record impulses from rapidly adapting mechanoreceptors (RA), slowly adapting type 1 mechanoreceptors (SA1), and slowly adapting type 2 mechanoreceptors (SA2) in these tissue preparations. We have also applied the pressure-clamped single-fiber recordings to record impulses on Aβ-fibers, Aδ-fibers, and C-fibers. The pressure-clamped single-fiber recording technique provides a new tool for sensory physiology and pain research.


Neuroreport ◽  
2000 ◽  
Vol 11 (9) ◽  
pp. 2031-2034 ◽  
Author(s):  
Frank Düsterhöft ◽  
Udo Häusler ◽  
Uwe Jürgens

Sign in / Sign up

Export Citation Format

Share Document