scholarly journals Author response: Neuronal populations in the occipital cortex of the blind synchronize to the temporal dynamics of speech

2018 ◽  
Author(s):  
Markus Johannes Van Ackeren ◽  
Francesca M Barbero ◽  
Stefania Mattioni ◽  
Roberto Bottini ◽  
Olivier Collignon
eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Markus Johannes Van Ackeren ◽  
Francesca M Barbero ◽  
Stefania Mattioni ◽  
Roberto Bottini ◽  
Olivier Collignon

The occipital cortex of early blind individuals (EB) activates during speech processing, challenging the notion of a hard-wired neurobiology of language. But, at what stage of speech processing do occipital regions participate in EB? Here we demonstrate that parieto-occipital regions in EB enhance their synchronization to acoustic fluctuations in human speech in the theta-range (corresponding to syllabic rate), irrespective of speech intelligibility. Crucially, enhanced synchronization to the intelligibility of speech was selectively observed in primary visual cortex in EB, suggesting that this region is at the interface between speech perception and comprehension. Moreover, EB showed overall enhanced functional connectivity between temporal and occipital cortices that are sensitive to speech intelligibility and altered directionality when compared to the sighted group. These findings suggest that the occipital cortex of the blind adopts an architecture that allows the tracking of speech material, and therefore does not fully abstract from the reorganized sensory inputs it receives.


2017 ◽  
Author(s):  
Markus J. van Ackeren ◽  
Francesca Barbero ◽  
Stefania Mattioni ◽  
Roberto Bottini ◽  
Olivier Collignon

AbstractThe occipital cortex of early blind individuals (EB) activates during speech processing, challenging the notion of a hard-wired neurobiology of language. But, at what stage of speech processing do occipital regions participate in EB?Here we demonstrate that parieto-occipital regions in EB enhance their synchronization to acoustic fluctuations in human speech in the theta-range (corresponding to syllabic rate), irrespective of speech intelligibility. Crucially, enhanced synchronization to the intelligibility of speech was selectively observed in primary visual cortex in EB, suggesting that this region is at the interface between speech perception and comprehension. Moreover, EB showed overall enhanced functional connectivity between temporal and occipital cortices sensitive to speech intelligibility and altered directionality when compared to the sighted group. These findings suggest that the occipital cortex of the blind adopts an architecture allowing the tracking of speech material, and therefore does not fully abstract from the reorganized sensory inputs it receives.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Lucie Bréchet ◽  
Denis Brunet ◽  
Lampros Perogamvros ◽  
Giulio Tononi ◽  
Christoph M. Michel

Abstract Why do people sometimes report that they remember dreams, while at other times they recall no experience? Despite the interest in dreams that may happen during the night, it has remained unclear which brain states determine whether these conscious experiences will occur and what prevents us from waking up during these episodes. Here we address this issue by comparing the EEG activity preceding awakenings with recalled vs. no recall of dreams using the EEG microstate approach. This approach characterizes transiently stable brain states of sub-second duration that involve neural networks with nearly synchronous dynamics. We found that two microstates (3 and 4) dominated during NREM sleep compared to resting wake. Further, within NREM sleep, microstate 3 was more expressed during periods followed by dream recall, whereas microstate 4 was less expressed. Source localization showed that microstate 3 encompassed the medial frontal lobe, whereas microstate 4 involved the occipital cortex, as well as thalamic and brainstem structures. Since NREM sleep is characterized by low-frequency synchronization, indicative of neuronal bistability, we interpret the increased presence of the “frontal” microstate 3 as a sign of deeper local deactivation, and the reduced presence of the “occipital” microstate 4 as a sign of local activation. The latter may account for the occurrence of dreaming with rich perceptual content, while the former may account for why the dreaming brain may undergo executive disconnection and remain asleep. This study demonstrates that NREM sleep consists of alternating brain states whose temporal dynamics determine whether conscious experience arises.


2017 ◽  
Vol 114 (48) ◽  
pp. 12827-12832 ◽  
Author(s):  
Diego Vidaurre ◽  
Stephen M. Smith ◽  
Mark W. Woolrich

The brain recruits neuronal populations in a temporally coordinated manner in task and at rest. However, the extent to which large-scale networks exhibit their own organized temporal dynamics is unclear. We use an approach designed to find repeating network patterns in whole-brain resting fMRI data, where networks are defined as graphs of interacting brain areas. We find that the transitions between networks are nonrandom, with certain networks more likely to occur after others. Further, this nonrandom sequencing is itself hierarchically organized, revealing two distinct sets of networks, or metastates, that the brain has a tendency to cycle within. One metastate is associated with sensory and motor regions, and the other involves areas related to higher order cognition. Moreover, we find that the proportion of time that a subject spends in each brain network and metastate is a consistent subject-specific measure, is heritable, and shows a significant relationship with cognitive traits.


2015 ◽  
Vol 35 (7) ◽  
pp. 1213-1219 ◽  
Author(s):  
Hye-Young Heo ◽  
John A Wemmie ◽  
Casey P Johnson ◽  
Daniel R Thedens ◽  
Vincent A Magnotta

Recent experiments suggest that T1 relaxation in the rotating frame ( T1ρ) is sensitive to metabolism and can detect localized activity-dependent changes in the human visual cortex. Current functional magnetic resonance imaging (fMRI) methods have poor temporal resolution due to delays in the hemodynamic response resulting from neurovascular coupling. Because T1ρ is sensitive to factors that can be derived from tissue metabolism, such as pH and glucose concentration via proton exchange, we hypothesized that activity-evoked T1ρ changes in visual cortex may occur before the hemodynamic response measured by blood oxygenation level-dependent (BOLD) and arterial spin labeling (ASL) contrast. To test this hypothesis, functional imaging was performed using BOLD, and ASL in human participants viewing an expanding ring stimulus. We calculated eccentricity phase maps across the occipital cortex for each functional signal and compared the temporal dynamics of T1ρ versus BOLD and ASL. The results suggest that T1ρ changes precede changes in the two blood flow-dependent measures. These observations indicate that T1ρ detects a signal distinct from traditional fMRI contrast methods. In addition, these findings support previous evidence that T1ρ is sensitive to factors other than blood flow, volume, or oxygenation. Furthermore, they suggest that tissue metabolism may be driving activity-evoked T1ρ changes.


2002 ◽  
Vol 15 (1) ◽  
pp. 1-15 ◽  
Author(s):  
M.G Woldorff ◽  
M Liotti ◽  
M Seabolt ◽  
L Busse ◽  
J.L Lancaster ◽  
...  

2019 ◽  
Author(s):  
Irene Bolea ◽  
Alejandro Gella ◽  
Elisenda Sanz ◽  
Patricia Prada-Dacasa ◽  
Fabien Menardy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document