scholarly journals Decision letter: Structural basis of proton translocation and force generation in mitochondrial ATP synthase

2017 ◽  
eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Niklas Klusch ◽  
Bonnie J Murphy ◽  
Deryck J Mills ◽  
Özkan Yildiz ◽  
Werner Kühlbrandt

ATP synthases produce ATP by rotary catalysis, powered by the electrochemical proton gradient across the membrane. Understanding this fundamental process requires an atomic model of the proton pathway. We determined the structure of an intact mitochondrial ATP synthase dimer by electron cryo-microscopy at near-atomic resolution. Charged and polar residues of the a-subunit stator define two aqueous channels, each spanning one half of the membrane. Passing through a conserved membrane-intrinsic helix hairpin, the lumenal channel protonates an acidic glutamate in the c-ring rotor. Upon ring rotation, the protonated glutamate encounters the matrix channel and deprotonates. An arginine between the two channels prevents proton leakage. The steep potential gradient over the sub-nm inter-channel distance exerts a force on the deprotonated glutamate, resulting in net directional rotation.


2018 ◽  
Vol 1859 ◽  
pp. e79
Author(s):  
Niklas Klusch ◽  
Bonnie J. Murphy ◽  
Julian D. Langer ◽  
Deryck J. Mills ◽  
Özkan Yildiz ◽  
...  

eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Anna Zhou ◽  
Alexis Rohou ◽  
Daniel G Schep ◽  
John V Bason ◽  
Martin G Montgomery ◽  
...  

Adenosine triphosphate (ATP), the chemical energy currency of biology, is synthesized in eukaryotic cells primarily by the mitochondrial ATP synthase. ATP synthases operate by a rotary catalytic mechanism where proton translocation through the membrane-inserted FO region is coupled to ATP synthesis in the catalytic F1 region via rotation of a central rotor subcomplex. We report here single particle electron cryomicroscopy (cryo-EM) analysis of the bovine mitochondrial ATP synthase. Combining cryo-EM data with bioinformatic analysis allowed us to determine the fold of the a subunit, suggesting a proton translocation path through the FO region that involves both the a and b subunits. 3D classification of images revealed seven distinct states of the enzyme that show different modes of bending and twisting in the intact ATP synthase. Rotational fluctuations of the c8-ring within the FO region support a Brownian ratchet mechanism for proton-translocation-driven rotation in ATP synthases.


Science ◽  
2017 ◽  
Vol 358 (6365) ◽  
pp. 936-940 ◽  
Author(s):  
Hui Guo ◽  
Stephanie A. Bueler ◽  
John L. Rubinstein

Mitochondrial adenosine triphosphate (ATP) synthase produces the majority of ATP in eukaryotic cells, and its dimerization is necessary to create the inner membrane folds, or cristae, characteristic of mitochondria. Proton translocation through the membrane-embedded FO region turns the rotor that drives ATP synthesis in the soluble F1 region. Although crystal structures of the F1 region have illustrated how this rotation leads to ATP synthesis, understanding how proton translocation produces the rotation has been impeded by the lack of an experimental atomic model for the FO region. Using cryo–electron microscopy, we determined the structure of the dimeric FO complex from Saccharomyces cerevisiae at a resolution of 3.6 angstroms. The structure clarifies how the protons travel through the complex, how the complex dimerizes, and how the dimers bend the membrane to produce cristae.


2015 ◽  
Author(s):  
Anna Zhou ◽  
Alexis Rohou ◽  
Daniel G Schep ◽  
John V Bason ◽  
Martin G Montgomery ◽  
...  

Adenosine triphosphate (ATP), the chemical energy currency of biology, is synthesized in eukaryotic cells primarily by the mitochondrial ATP synthase. ATP synthases operate by a rotary catalytic mechanism where proton translocation through the membrane-inserted FO region is coupled to ATP synthesis in the catalytic F1 region via rotation of a central rotor subcomplex. We report here single particle electron cryomicroscopy (cryo-EM) analysis of the bovine mitochondrial ATP synthase. Combining cryo-EM data with bioinformatic analysis allowed us to determine the fold of the a subunit, suggesting a proton translocation path through the FO region that involves both the a and b subunits. 3D classification of images revealed seven distinct states of the enzyme that show different modes of bending and twisting in the intact ATP synthase. Rotational fluctuations of the c8-ring within the FO region support a Brownian ratchet mechanism for proton-translocation driven rotation in ATP synthases.


Sign in / Sign up

Export Citation Format

Share Document