scholarly journals Decision letter: The ER membrane protein complex interacts cotranslationally to enable biogenesis of multipass membrane proteins

2018 ◽  
2019 ◽  
Vol 30 (23) ◽  
pp. 2890-2900 ◽  
Author(s):  
Naoki Hiramatsu ◽  
Tatsuya Tago ◽  
Takunori Satoh ◽  
Akiko K. Satoh

Most membrane proteins are synthesized on and inserted into the membrane of the endoplasmic reticulum (ER), in eukaryote. The widely conserved ER membrane protein complex (EMC) facilitates the biogenesis of a wide range of membrane proteins. In this study, we investigated the EMC function using Drosophila photoreceptor as a model system. We found that the EMC was necessary only for the biogenesis of a subset of multipass membrane proteins such as rhodopsin (Rh1), TRP, TRPL, Csat, Cni, SERCA, and Na+K+ATPase α, but not for that of secretory or single-pass membrane proteins. Additionally, in EMC-deficient cells, Rh1 was translated to its C terminus but degraded independently from ER-associated degradation. Thus, EMC exerted its effect after translation but before or during the membrane integration of transmembrane domains (TMDs). Finally, we found that EMC was not required for the stable expression of the first three TMDs of Rh1 but was required for that of the fourth and fifth TMDs. Our results suggested that EMC is required for the ER membrane insertion of succeeding TMDs of multipass membrane proteins.


Cell Reports ◽  
2019 ◽  
Vol 28 (10) ◽  
pp. 2517-2526.e5 ◽  
Author(s):  
Songhai Tian ◽  
Quan Wu ◽  
Bo Zhou ◽  
Mei Yuk Choi ◽  
Bo Ding ◽  
...  

Author(s):  
Matthew J Shurtleff ◽  
Daniel N Itzhak ◽  
Jeffrey A Hussmann ◽  
Nicole T Schirle Oakdale ◽  
Elizabeth A Costa ◽  
...  

2018 ◽  
Vol 132 (2) ◽  
pp. jcs223453 ◽  
Author(s):  
Norbert Volkmar ◽  
Maria-Laetitia Thezenas ◽  
Sharon M. Louie ◽  
Szymon Juszkiewicz ◽  
Daniel K. Nomura ◽  
...  

Cell Reports ◽  
2019 ◽  
Vol 27 (6) ◽  
pp. 1666-1674.e4 ◽  
Author(s):  
David L. Lin ◽  
Takamasa Inoue ◽  
Yu-Jie Chen ◽  
Aaron Chang ◽  
Billy Tsai ◽  
...  

F1000Research ◽  
2015 ◽  
Vol 4 ◽  
pp. 624 ◽  
Author(s):  
Jeremy G. Wideman

The recently discovered endoplasmic reticulum (ER) membrane protein complex (EMC) has been implicated in ER-associated degradation (ERAD), lipid transport and tethering between the ER and mitochondrial outer membranes, and assembly of multipass ER-membrane proteins. The EMC has been studied in both animals and fungi but its presence outside the Opisthokont clade (animals + fungi + related protists) has not been demonstrated. Here, using homology-searching algorithms, I show that the EMC is truly an ancient and conserved protein complex, present in every major eukaryotic lineage. Very few organisms have completely lost the EMC, and most, even over 2 billion years of eukaryote evolution, have retained a majority of the complex members. I identify Sop4 and YDR056C in Saccharomyces cerevisiae as Emc7 and Emc10, respectively, subunits previously thought to be specific to animals. This study demonstrates that the EMC was present in the last eukaryote common ancestor (LECA) and is an extremely important component of eukaryotic cells even though its primary function remains elusive.


2020 ◽  
Vol 130 (2) ◽  
pp. 813-826 ◽  
Author(s):  
Jonathan Marquez ◽  
June Criscione ◽  
Rebekah M. Charney ◽  
Maneeshi S. Prasad ◽  
Woong Y. Hwang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document