scholarly journals Neural activity in a hippocampus-like region of the teleost pallium is associated with active sensing and navigation

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Haleh Fotowat ◽  
Candice Lee ◽  
James Jaeyoon Jun ◽  
Len Maler

Most vertebrates use active sensing strategies for perception, cognition and control of motor activity. These strategies include directed body/sensor movements or increases in discrete sensory sampling events. The weakly electric fish, Gymnotus sp., uses its active electric sense during navigation in the dark. Electric organ discharge rate undergoes transient increases during navigation to increase electrosensory sampling. Gymnotus also use stereotyped backward swimming as an important form of active sensing that brings objects toward the electroreceptor dense fovea-like head region. We wirelessly recorded neural activity from the pallium of freely swimming Gymnotus. Spiking activity was sparse and occurred only during swimming. Notably, most units tended to fire during backward swims and their activity was on average coupled to increases in sensory sampling. Our results provide the first characterization of neural activity in a hippocampal (CA3)-like region of a teleost fish brain and connects it to active sensing of spatial environmental features.

2018 ◽  
Author(s):  
H Fotowat ◽  
C Lee ◽  
JJ Jun ◽  
L Maler

AbstractNeural mechanisms underlying spatial navigation in fish are unknown and little is known, for any vertebrate, about the relationship between active sensing and the formation of spatial maps. The weakly electric fish, Gymnotus Carapo, uses their active electric sense for spatial navigation. The electric organ discharge rate (EODr) undergoes transient increases during navigation to enhance electrosensory sampling. Gymnotus also uses stereotyped forward/ backward swimming as a second form of active sensing that brings objects towards the electroreceptor-dense head region. We wirelessly recorded neural activity from the pallium of freely swimming Gymnotus. Spiking activity was sparse and occurred only during swimming. Notably, some units exhibited significant place specificity and/or association with both forms of active sensing. Our results provide the first characterization of neural activity in a hippocampal-like region of a teleost fish brain and connects active sensing via sensory sampling rate and directed movements to higher order encoding of spatial information.


2002 ◽  
Vol 205 (21) ◽  
pp. 3307-3320
Author(s):  
Stefan Schuster ◽  
Natalie Otto

SUMMARY Weakly electric fish communicate and electrolocate objects in the dark by discharging their electric organs (EOs) and monitoring the spatiotemporal pattern of current flow through their skin. In the South-American pulse-type gymnotid fish these organs often are intriguingly complex, comprising several hundreds of electrogenic cells (electrocytes) of various morphologies,innervation patterns and abilities to generate a spike, distributed over nearly the full length of the fish. An attractive idea is that different parts of the organ may serve distinct functions in electrocommunication and electrolocation. Recent studies support this notion and suggest that the currents produced during the final phase of the electric organ discharge (EOD)are used for communication. Here, we explore a method to directly assess the relevance of the various currents for electrolocation. In this new method, the pattern of current flow during a gymnotid EOD is changed selectively at distinct phases of the EOD so that currents generated by known electrocyte groups are affected. We have studied the roles played by the various currents for the detection of novel feedback at the trunk/tail region of the gymnotid fish Gymnotus carapo. An experimental animal rested in a cage and two electrodes were placed at a close distance to its trunk and tail. An electronic switch briefly connected these electrodes during a selected phase within an EOD and the shunting of EOD current that resulted from switch closure was directly monitored. G. carapo responded with an acceleration of its discharge rate to novelties in the EOD feedback that occurred only for a fraction of a single EOD. Controls in which the switch was closed during the silent intervals between successive EODs showed that the fish responded to the changes in EOD feedback and not to unrelated artefacts of the brief switch closure. Fish responded to shunting of current during all phases; the sensitivity was highest during the final headnegative phase but the magnitude of shunted current was largest in the preceeding phase. The current produced during the final part of the EOD is thus not reserved for communication as previously suggested but plays a predominant role in electrolocation at the trunk and tail region of G. carapo.


2000 ◽  
Vol 203 (3) ◽  
pp. 481-492 ◽  
Author(s):  
R. Budelli ◽  
A.A. Caputi

Weakly electric fish explore the environment using electrolocation. They produce an electric field that is detected by cutaneous electroreceptors; external objects distort the field, thus generating an electric image. The electric image of objects of complex impedance was investigated using a realistic model, which was able to reproduce previous experimental data. The transcutaneous voltage in the presence of an elementary object is modulated in amplitude and waveform on the skin. Amplitude modulation (measured as the relative change in the local peak-to-peak amplitude) consists of a ‘Mexican hat’ profile whose maximum relative slope depends on the distance of the fish from the object. Waveform modulation depends on both the distance and the electrical characteristics of the object. Changes in waveform are indicated by the amplitude ratio of the larger positive and negative phases of the local electric organ discharge on the skin. Using the peak-to-peak amplitude and the positive-to-negative amplitude ratio of this discharge, a perceptual space can be defined and correlated with the capacitance and resistance of the object. When the object is moved away, the perceptual space is reduced but keeps the same proportions (homothetically): for a given object, the positive-to-negative amplitude ratio is a linear function of the peak-to-peak amplitude. This linear function depends on the electrical characteristics of the object. However, there are ‘families’ of objects with different electrical characteristics that produce changes in the parameters of the local electric organ discharge that are related by the same linear function. We propose that these functions code the perceptual properties of an object related to its impedance.


1993 ◽  
Vol 71 (11) ◽  
pp. 2301-2310 ◽  
Author(s):  
Günther K. H. Zupanc ◽  
Leonard Maler

Apteronotus leptorhynchus, a gymnotiform fish, produces highly regular electric organ discharges of 600–1000 Hz. Short-term modulations of the electric organ discharge ("chirps") were elicited by imitating the discharges of neighboring fish. Chirps displayed an increase in frequency of approximately 100 Hz, a duration of about 15 ms, and an absolute amplitude of 0.5–2 mV. Since, similar to natural conditions, chirps summated with the beat caused by interference of the fish's own electric organ discharge and the imitating discharge, the size and shape of the chirp's amplitude envelope varied greatly according to its phase relative to the beat cycle; however, the frequency of the chirp amplitude modulation was always 50–100 Hz. All 21 males examined chirped, but their rate of chirping varied considerably (range 2–59 chirps/30 s; mean 22 chirps/30 s). In contrast, only one out of nine females chirped (mean 0.25 chirps/30 s). The latency between stimulus onset and first chirp was variable and often long (range 1.0–25.0 s; median 3.3 s). We propose that chirps are not a sensory reflex but a communicatory behavior regulated by hypothalamic peptidergic input.


2010 ◽  
Vol 7 (2) ◽  
pp. 197-200 ◽  
Author(s):  
Vincent Fugère ◽  
Hernán Ortega ◽  
Rüdiger Krahe

Animals often use signals to communicate their dominance status and avoid the costs of combat. We investigated whether the frequency of the electric organ discharge (EOD) of the weakly electric fish, Sternarchorhynchus sp., signals the dominance status of individuals. We correlated EOD frequency with body size and found a strong positive relationship. We then performed a competition experiment in which we found that higher frequency individuals were dominant over lower frequency ones. Finally, we conducted an electrical playback experiment and found that subjects more readily approached and attacked the stimulus electrodes when they played low-frequency signals than high-frequency ones. We propose that EOD frequency communicates dominance status in this gymnotiform species.


Sign in / Sign up

Export Citation Format

Share Document