scholarly journals Decision letter: Heterogeneity in surface sensing suggests a division of labor in Pseudomonas aeruginosa populations

2019 ◽  
Author(s):  
Alexandre Persat
2019 ◽  
Author(s):  
Catherine R Armbruster ◽  
Calvin K Lee ◽  
Jessica Parker-Gilham ◽  
Jaime de Anda ◽  
Aiguo Xia ◽  
...  

2019 ◽  
Author(s):  
Catherine R. Armbruster ◽  
Calvin K. Lee ◽  
Jessica Parker-Gilham ◽  
Jaime de Anda ◽  
Aiguo Xia ◽  
...  

AbstractThe second messenger signaling molecule cyclic diguanylate monophosphate (c-di-GMP) drives the transition from planktonic to biofilm growth in many bacterial species. Pseudomonas aeruginosa has two surface sensing systems that produce c-di-GMP in response to surface adherence. The current thinking in the field is that once cells attach to a surface, they uniformly respond with elevated c-di-GMP. Here, we describe how the Wsp system generates heterogeneity in surface sensing, resulting in two physiologically distinct subpopulations of cells. One subpopulation has elevated c-di-GMP and produces biofilm matrix, serving as the founders of initial microcolonies. The other subpopulation has low c-di-GMP and engages in surface motility, allowing for exploration of the surface. We also show that this heterogeneity strongly correlates to surface behavior for descendent cells. Together, our results suggest that after surface attachment, P. aeruginosa engages in a division of labor that persists across generations, accelerating early biofilm formation and surface exploration.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Catherine R Armbruster ◽  
Calvin K Lee ◽  
Jessica Parker-Gilham ◽  
Jaime de Anda ◽  
Aiguo Xia ◽  
...  

The second messenger signaling molecule cyclic diguanylate monophosphate (c-di-GMP) drives the transition between planktonic and biofilm growth in many bacterial species. Pseudomonas aeruginosa has two surface sensing systems that produce c-di-GMP in response to surface adherence. Current thinking in the field is that once cells attach to a surface, they uniformly respond by producing c-di-GMP. Here, we describe how the Wsp system generates heterogeneity in surface sensing, resulting in two physiologically distinct subpopulations of cells. One subpopulation has elevated c-di-GMP and produces biofilm matrix, serving as the founders of initial microcolonies. The other subpopulation has low c-di-GMP and engages in surface motility, allowing for exploration of the surface. We also show that this heterogeneity strongly correlates to surface behavior for descendent cells. Together, our results suggest that after surface attachment, P. aeruginosa engages in a division of labor that persists across generations, accelerating early biofilm formation and surface exploration.


2019 ◽  
Author(s):  
Catherine R Armbruster ◽  
Calvin K Lee ◽  
Jessica Parker-Gilham ◽  
Jaime de Anda ◽  
Aiguo Xia ◽  
...  

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Catherine R Armbruster ◽  
Calvin K Lee ◽  
Jessica Parker-Gilham ◽  
Jaime de Anda ◽  
Aiguo Xia ◽  
...  

2020 ◽  
Vol 22 (8) ◽  
pp. 3572-3587
Author(s):  
Bartosz Gerard Gdaniec ◽  
Pierre‐Marie Allard ◽  
Emerson Ferreira Queiroz ◽  
Jean‐Luc Wolfender ◽  
Christian Delden ◽  
...  

2021 ◽  
Vol 20 ◽  
pp. S208-S209
Author(s):  
L. O’Neal ◽  
Z. Suo ◽  
C. Harwood ◽  
M. Parsek

mBio ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Calvin K. Lee ◽  
Jérémy Vachier ◽  
Jaime de Anda ◽  
Kun Zhao ◽  
Amy E. Baker ◽  
...  

ABSTRACT What are bacteria doing during “reversible attachment,” the period of transient surface attachment when they initially engage a surface, besides attaching themselves to the surface? Can an attaching cell help any other cell attach? If so, does it help all cells or employ a more selective strategy to help either nearby cells (spatial neighbors) or its progeny (temporal neighbors)? Using community tracking methods at the single-cell resolution, we suggest answers to these questions based on how reversible attachment progresses during surface sensing for Pseudomonas aeruginosa strains PAO1 and PA14. Although PAO1 and PA14 exhibit similar trends of surface cell population increase, they show unanticipated differences when cells are considered at the lineage level and interpreted using the quantitative framework of an exactly solvable stochastic model. Reversible attachment comprises two regimes of behavior, processive and nonprocessive, corresponding to whether cells of the lineage stay on the surface long enough to divide, or not, before detaching. Stark differences between PAO1 and PA14 in the processive regime of reversible attachment suggest the existence of two surface colonization strategies. PAO1 lineages commit quickly to a surface compared to PA14 lineages, with early c-di-GMP-mediated exopolysaccharide (EPS) production that can facilitate the attachment of neighbors. PA14 lineages modulate their motility via cyclic AMP (cAMP) and retain memory of the surface so that their progeny are primed for improved subsequent surface attachment. Based on the findings of previous studies, we propose that the differences between PAO1 and PA14 are potentially rooted in downstream differences between Wsp-based and Pil-Chp-based surface-sensing systems, respectively. IMPORTANCE The initial pivotal phase of bacterial biofilm formation known as reversible attachment, where cells undergo a period of transient surface attachment, is at once universal and poorly understood. What is more, although we know that reversible attachment culminates ultimately in irreversible attachment, it is not clear how reversible attachment progresses phenotypically, as bacterial surface-sensing circuits fundamentally alter cellular behavior. We analyze diverse observed bacterial behavior one family at a time (defined as a full lineage of cells related to one another by division) using a unifying stochastic model and show that our findings lead to insights on the time evolution of reversible attachment and the social cooperative dimension of surface attachment in PAO1 and PA14 strains.


Sign in / Sign up

Export Citation Format

Share Document