surface sensing
Recently Published Documents


TOTAL DOCUMENTS

165
(FIVE YEARS 46)

H-INDEX

22
(FIVE YEARS 6)

2021 ◽  
Vol 20 ◽  
pp. S208-S209
Author(s):  
L. O’Neal ◽  
Z. Suo ◽  
C. Harwood ◽  
M. Parsek

Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6166
Author(s):  
Sneha Verma ◽  
Souvik Ghosh ◽  
B.M.A. Rahman

Gold nanoantennas have been used in a variety of biomedical applications due to their attractive electronic and optical properties, which are shape- and size-dependent. Here, a periodic paired gold nanostructure exploiting surface plasmon resonance is proposed, which shows promising results for Refractive Index (RI) detection due to its high electric field confinement and diffraction limit. Here, single and paired gold nanostructured sensors were designed for real-time RI detection. The Full-Width at Half-Maximum (FWHM) and Figure-Of-Merit (FOM) were also calculated, which relate the sensitivity to the sharpness of the peak. The effect of different possible structural shapes and dimensions were studied to optimise the sensitivity response of nanosensing structures and identify an optimised elliptical nanoantenna with the major axis a, minor axis b, gap between the pair g, and heights h being 100 nm, 10 nm, 10 nm, and 40 nm, respectively. In this work, we investigated the bulk sensitivity, which is the spectral shift per refractive index unit due to the change in the surrounding material, and this value was calculated as 526–530 nm/RIU, while the FWHM was calculated around 110 nm with a FOM of 8.1. On the other hand, the surface sensing was related to the spectral shift due to the refractive index variation of the surface layer near the paired nanoantenna surface, and this value for the same antenna pair was calculated as 250 nm/RIU for a surface layer thickness of 4.5 nm.


2021 ◽  
Author(s):  
Shanice Webster ◽  
Marion Mathelie-Guinlet ◽  
Andreia Verissimo ◽  
Daniel Schultz ◽  
Albertus Viljoen ◽  
...  

During biofilm formation, the opportunistic pathogen Pseudomonas aeruginosa uses its type IV pili (TFP) to sense a surface, eliciting increased second messenger production and regulating target pathways required to adapt to a surface lifestyle. The mechanisms whereby TFP detect surface contact is still poorly understood, although mechanosensing is often invoked with little data supporting this claim. Using a combination of molecular genetics and single cell analysis, with biophysical, biochemical and genomics techniques we show that force-induced changes mediated by the von Willebrand A (vWA) domain-containing, TFP tip-associated protein PilY1 are required for surface sensing. Atomic force microscopy shows that PilY1 can undergo force induced, sustained conformational changes akin to those observed for mechanosensitive proteins like titin. We show that mutation of a single cysteine residue in the vWA domain results in modestly lower surface adhesion forces, increased nanospring-like properties, as well as reduced c-di-GMP signaling and biofilm formation. Mutating this cysteine has allowed us to genetically separate TFP function in twitching from surface sensing signaling. The conservation of this Cys residue in all P. aeruginosa PA14 strains, and its absence in the ~720 sequenced strains of P. aeruginosa PAO1, could contribute to explaining the observed differences in surface colonization strategies observed for PA14 versus PAO1.


2021 ◽  
Author(s):  
Patrick Steglich ◽  
Dominik G. Rabus ◽  
Cinzia Sada ◽  
Martin Paul ◽  
Michael G. Weller ◽  
...  

Silicon photonic micro-ring resonators (MRR) developed on the silicon-on-insulator (SOI) platform, owing to their high sensitivity and small footprint, show great potential for many chemical and biological sensing applications such as label-free detection in environmental monitoring, biomedical engineering, and food analysis. In this tutorial, we provide the theoretical background and give design guidelines for SOI-based MRR as well as examples of surface functionalization procedures for label-free detection of molecules. <br>After introducing the advantages and perspectives of MRR, fundamentals of MRR are described in detail, followed by an introduction to the fabrication methods, which are based on a complementary metal-oxide semiconductor (CMOS) technology. Optimization of MRR for chemical and biological sensing is provided, with special emphasis on the optimization of waveguide geometry. At this point, the difference between chemical bulk sensing and label-free surface sensing is explained, and definitions like waveguide sensitivity, ring sensitivity, overall sensitivity as well as the limit of detection (LoD) of MRR are introduced. Further, we show and explain chemical bulk sensing of sodium chloride (NaCl) in water and provide a recipe for label-free surface sensing.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4348
Author(s):  
Piotr Mrozek ◽  
Ewa Gorodkiewicz ◽  
Paweł Falkowski ◽  
Bogusław Hościło

Comparative analysis of the sensitivity of two surface plasmon resonance (SPR) biosensors was conducted on a single-metallic Au sensor and bimetallic Ag–Au sensor, using a cathepsin S sensor as an example. Numerically modeled resonance curves of Au and Ag–Au layers, with parameters verified by the results of experimental reflectance measurement of real-life systems, were used for the analysis of these sensors. Mutual relationships were determined between ∂Y/∂n components of sensitivity of the Y signal in the SPR measurement to change the refractive index n of the near-surface sensing layer and ∂n/∂c sensitivity of refractive index n to change the analyte’s concentration, c, for both types of sensors. Obtained results were related to experimentally determined calibration curves of both sensors. A characteristic feature arising from the comparison of calibration curves is the similar level of Au and Ag–Au biosensors’ sensitivity in the linear range, where the signal of the AgAu sensor is at a level several times greater. It was shown that the influence of sensing surface morphology on the ∂n/∂c sensitivity component had to be incorporated to explain the features of calibration curves of sensors. The shape of the sensory surface relief was proposed to increase the sensor sensitivity at low analyte concentrations.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Courtney K. Ellison ◽  
Triana N. Dalia ◽  
Catherine A. Klancher ◽  
Joshua W. Shaevitz ◽  
Zemer Gitai ◽  
...  

AbstractBacteria use extracellular appendages called type IV pili (T4P) for diverse behaviors including DNA uptake, surface sensing, virulence, protein secretion, and twitching motility. Dynamic extension and retraction of T4P is essential for their function, and T4P extension is thought to occur through the action of a single, highly conserved motor, PilB. Here, we develop Acinetobacter baylyi as a model to study T4P by employing a recently developed pilus labeling method. By contrast to previous studies of other bacterial species, we find that T4P synthesis in A. baylyi is dependent not only on PilB but also on an additional, phylogenetically distinct motor, TfpB. Furthermore, we identify a protein (CpiA) that inhibits T4P extension by specifically binding and inhibiting PilB but not TfpB. These results expand our understanding of T4P regulation and highlight how inhibitors might be exploited to disrupt T4P synthesis.


mSphere ◽  
2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Kara B. De Leόn

ABSTRACT Kara B. De Leόn works in the field of microbial ecology, environmental biofilms, and microbial genetics. In this mSphere of Influence article, she reflects on how the paper “Multigenerational memory and adaptive adhesion in early bacterial biofilm communities” by C. K. Lee et al. (C. K. Lee, J. de Anda, A. E. Baker, R. R. Bennett, et al., Proc Natl Acad Sci U S A 115:4471–4476, 2018, https://dx.doi.org/10.1073/pnas.1720071115) made an impact on her by changing the way she thinks about initial cell attachment to a surface in an environment.


Sign in / Sign up

Export Citation Format

Share Document