scholarly journals Author response: Fully automated, sequential focused ion beam milling for cryo-electron tomography

Author(s):  
Tobias Zachs ◽  
Andreas Schertel ◽  
João Medeiros ◽  
Gregor L Weiss ◽  
Jannik Hugener ◽  
...  
2014 ◽  
Vol 106 (2) ◽  
pp. 600a ◽  
Author(s):  
Elizabeth Villa ◽  
Miroslava Schaffer ◽  
Jürgen M. Plitzko ◽  
Wolfgang Baumeister

2014 ◽  
Vol 20 (S3) ◽  
pp. 1222-1223
Author(s):  
Elizabeth Villa ◽  
Miroslava Schaffer ◽  
Ben Engel ◽  
Jürgen Plitzko ◽  
Wolfgang Baumeister

2020 ◽  
Vol 15 (6) ◽  
pp. 2041-2070 ◽  
Author(s):  
Felix R. Wagner ◽  
Reika Watanabe ◽  
Ruud Schampers ◽  
Digvijay Singh ◽  
Hans Persoon ◽  
...  

2013 ◽  
Vol 23 (5) ◽  
pp. 771-777 ◽  
Author(s):  
Elizabeth Villa ◽  
Miroslava Schaffer ◽  
Jürgen M Plitzko ◽  
Wolfgang Baumeister

2015 ◽  
Vol 25 (1) ◽  
pp. 49 ◽  
Author(s):  
Terence Wagenknecht ◽  
Chyongere Hsieh ◽  
Michael Marko

Cryo-electron tomography (cryo-ET) has emerged as perhaps the only practical technique for revealing nanometer-level three-dimensional structural details of subcellular macromolecular complexes in their native context, inside the cell. As currently practiced, the specimen should be 0.1- 0.2 microns in thickness to achieve optimal resolution. Thus, application of cryo-ET to intact frozen (vitreous) tissues, such as skeletal muscle, requires that they be sectioned. Cryo-ultramicrotomy is notoriously difficult and artifact-prone when applied to frozen cells and tissue, but a new technique, focused ion beam milling (cryo-FIB), shows great promise for “thinning” frozen biological specimens. Here we describe our initial results in applying cryo-FIB and cryo-ET to triad junctions of skeletal muscle.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Yury S Bykov ◽  
Miroslava Schaffer ◽  
Svetlana O Dodonova ◽  
Sahradha Albert ◽  
Jürgen M Plitzko ◽  
...  

COPI-coated vesicles mediate trafficking within the Golgi apparatus and from the Golgi to the endoplasmic reticulum. The structures of membrane protein coats, including COPI, have been extensively studied with in vitro reconstitution systems using purified components. Previously we have determined a complete structural model of the in vitro reconstituted COPI coat (Dodonova et al., 2017). Here, we applied cryo-focused ion beam milling, cryo-electron tomography and subtomogram averaging to determine the native structure of the COPI coat within vitrified Chlamydomonas reinhardtii cells. The native algal structure resembles the in vitro mammalian structure, but additionally reveals cargo bound beneath β’–COP. We find that all coat components disassemble simultaneously and relatively rapidly after budding. Structural analysis in situ, maintaining Golgi topology, shows that vesicles change their size, membrane thickness, and cargo content as they progress from cis to trans, but the structure of the coat machinery remains constant.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Kanika Khanna ◽  
Javier Lopez-Garrido ◽  
Ziyi Zhao ◽  
Reika Watanabe ◽  
Yuan Yuan ◽  
...  

The study of bacterial cell biology is limited by difficulties in visualizing cellular structures at high spatial resolution within their native milieu. Here, we visualize Bacillus subtilis sporulation using cryo-electron tomography coupled with cryo-focused ion beam milling, allowing the reconstruction of native-state cellular sections at molecular resolution. During sporulation, an asymmetrically-positioned septum generates a larger mother cell and a smaller forespore. Subsequently, the mother cell engulfs the forespore. We show that the septal peptidoglycan is not completely degraded at the onset of engulfment. Instead, the septum is uniformly and only slightly thinned as it curves towards the mother cell. Then, the mother cell membrane migrates around the forespore in tiny finger-like projections, whose formation requires the mother cell SpoIIDMP protein complex. We propose that a limited number of SpoIIDMP complexes tether to and degrade the peptidoglycan ahead of the engulfing membrane, generating an irregular membrane front.


Sign in / Sign up

Export Citation Format

Share Document