scholarly journals OTX2 represses sister cell fate choices in the developing retina to promote photoreceptor specification

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Miruna Georgiana Ghinia Tegla ◽  
Diego F Buenaventura ◽  
Diana Y Kim ◽  
Cassandra Thakurdin ◽  
Kevin C Gonzalez ◽  
...  

During vertebrate retinal development, subsets of progenitor cells generate progeny in a non-stochastic manner, suggesting that these decisions are tightly regulated. However, the gene-regulatory network components that are functionally important in these progenitor cells are largely unknown. Here we identify a functional role for the OTX2 transcription factor in this process. CRISPR/Cas9 gene editing was used to produce somatic mutations of OTX2 in the chick retina and identified similar phenotypes to those observed in human patients. Single cell RNA sequencing was used to determine the functional consequences OTX2 gene editing on the population of cells derived from OTX2-expressing retinal progenitor cells. This confirmed that OTX2 is required for the generation of photoreceptors, but also for repression of specific retinal fates and alternative gene regulatory networks. These include specific subtypes of retinal ganglion and horizontal cells, suggesting that in this context, OTX2 functions to repress sister cell fate choices.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mika J. Välimäki ◽  
Robert S. Leigh ◽  
Sini M. Kinnunen ◽  
Alexander R. March ◽  
Ana Hernández de Sande ◽  
...  

AbstractBackgroundPharmacological modulation of cell fate decisions and developmental gene regulatory networks holds promise for the treatment of heart failure. Compounds that target tissue-specific transcription factors could overcome non-specific effects of small molecules and lead to the regeneration of heart muscle following myocardial infarction. Due to cellular heterogeneity in the heart, the activation of gene programs representing specific atrial and ventricular cardiomyocyte subtypes would be highly desirable. Chemical compounds that modulate atrial and ventricular cell fate could be used to improve subtype-specific differentiation of endogenous or exogenously delivered progenitor cells in order to promote cardiac regeneration.MethodsTranscription factor GATA4-targeted compounds that have previously shown in vivo efficacy in cardiac injury models were tested for stage-specific activation of atrial and ventricular reporter genes in differentiating pluripotent stem cells using a dual reporter assay. Chemically induced gene expression changes were characterized by qRT-PCR, global run-on sequencing (GRO-seq) and immunoblotting, and the network of cooperative proteins of GATA4 and NKX2-5 were further explored by the examination of the GATA4 and NKX2-5 interactome by BioID. Reporter gene assays were conducted to examine combinatorial effects of GATA-targeted compounds and bromodomain and extraterminal domain (BET) inhibition on chamber-specific gene expression.ResultsGATA4-targeted compounds 3i-1000 and 3i-1103 were identified as differential modulators of atrial and ventricular gene expression. More detailed structure-function analysis revealed a distinct subclass of GATA4/NKX2-5 inhibitory compounds with an acetyl lysine-like domain that contributed to ventricular cells (%Myl2-eGFP+). Additionally, BioID analysis indicated broad interaction between GATA4 and BET family of proteins, such as BRD4. This indicated the involvement of epigenetic modulators in the regulation of GATA-dependent transcription. In this line, reporter gene assays with combinatorial treatment of 3i-1000 and the BET bromodomain inhibitor (+)-JQ1 demonstrated the cooperative role of GATA4 and BRD4 in the modulation of chamber-specific cardiac gene expression.ConclusionsCollectively, these results indicate the potential for therapeutic alteration of cell fate decisions and pathological gene regulatory networks by GATA4-targeted compounds modulating chamber-specific transcriptional programs in multipotent cardiac progenitor cells and cardiomyocytes. The compound scaffolds described within this study could be used to develop regenerative strategies for myocardial regeneration.


BMC Genomics ◽  
2012 ◽  
Vol 13 (1) ◽  
pp. 298 ◽  
Author(s):  
Catharina Scholl ◽  
Kathrin Weiβmüller ◽  
Pavlo Holenya ◽  
Maya Shaked-Rabi ◽  
Kerry L Tucker ◽  
...  

2021 ◽  
Vol 17 (6) ◽  
pp. e1009077
Author(s):  
Yuchi Qiu ◽  
Lianna Fung ◽  
Thomas F. Schilling ◽  
Qing Nie

The vertebrate hindbrain is segmented into rhombomeres (r) initially defined by distinct domains of gene expression. Previous studies have shown that noise-induced gene regulation and cell sorting are critical for the sharpening of rhombomere boundaries, which start out rough in the forming neural plate (NP) and sharpen over time. However, the mechanisms controlling simultaneous formation of multiple rhombomeres and accuracy in their sizes are unclear. We have developed a stochastic multiscale cell-based model that explicitly incorporates dynamic morphogenetic changes (i.e. convergent-extension of the NP), multiple morphogens, and gene regulatory networks to investigate the formation of rhombomeres and their corresponding boundaries in the zebrafish hindbrain. During pattern initiation, the short-range signal, fibroblast growth factor (FGF), works together with the longer-range morphogen, retinoic acid (RA), to specify all of these boundaries and maintain accurately sized segments with sharp boundaries. At later stages of patterning, we show a nonlinear change in the shape of rhombomeres with rapid left-right narrowing of the NP followed by slower dynamics. Rapid initial convergence improves boundary sharpness and segment size by regulating cell sorting and cell fate both independently and coordinately. Overall, multiple morphogens and tissue dynamics synergize to regulate the sizes and boundaries of multiple segments during development.


Author(s):  
Pierre-Etienne Cholley ◽  
Julien Moehlin ◽  
Alexia Rohmer ◽  
Vincent Zilliox ◽  
Samuel Nicaise ◽  
...  

F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 2108 ◽  
Author(s):  
Christopher Gregg

Epigenetic mechanisms that cause maternally and paternally inherited alleles to be expressed differently in offspring have the potential to radically change our understanding of the mechanisms that shape disease susceptibility, phenotypic variation, cell fate, and gene expression. However, the nature and prevalence of these effects in vivo have been unclear and are debated. Here, I consider major new studies of epigenetic allelic effects in cell lines and primary cells and in vivo. The emerging picture is that these effects take on diverse forms, and this review attempts to clarify the nature of the different forms that have been uncovered for genomic imprinting and random monoallelic expression (RME). I also discuss apparent discrepancies between in vitro and in vivo studies. Importantly, multiple studies suggest that allelic effects are prevalent and can be developmental stage- and cell type-specific. I propose some possible functions and consider roles for allelic effects within the broader context of gene regulatory networks, cellular diversity, and plasticity. Overall, the field is ripe for discovery and is in need of mechanistic and functional studies.


Sign in / Sign up

Export Citation Format

Share Document