fate specification
Recently Published Documents


TOTAL DOCUMENTS

520
(FIVE YEARS 106)

H-INDEX

67
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Burcu Vitrinel ◽  
Christine Vogel ◽  
Lionel Christiaen

During embryonic development, cell fate specification gives rise to dedicated lineages that underlie tissue formation. In olfactores, which comprise tunicates and vertebrates, the cardiopharyngeal field is formed by multipotent progenitors to both cardiac and branchiomeric muscles. The ascidian Ciona is a powerful model to study the cardiopharyngeal fate specification with cellular resolution, as only 2 pairs of cardiopharyngeal multipotent progenitors give rise to the heart and to pharyngeal muscles (aka atrial siphon muscles, ASM). These progenitors are multilineage primed, in as much as they express a combination of early ASM- and heart-specific transcripts that become restricted to their corresponding precursors, following oriented asymmetric divisions. Here, we identify the primed gene Rnf149-related (Rnf149-r), which becomes restricted to the heart progenitors, but appears to regulate pharyngeal muscle fate specification in the cardiopharyngeal lineage. CRISPR/Cas9-mediated loss knock-out of Rnf149-r function impairs atrial siphon muscle morphogenesis, and down-regulates Tbx1/10 and Ebf, two key determinants of the pharyngeal muscle fate, while upregulating heart-specific gene expression. These phenotypes are reminiscent of loss of FGF-MAPK signaling in the cardiopharyngeal lineage, and integrated analysis of lineage-specific bulk RNA-seq profiling of loss-of-function perturbations identified a significant overlap between FGF-MAPK and Rnf149-r targets. However, functional interaction assays suggested the Rnf149-r does not directly modulate the activity of the FGF-MAPK-Ets1/2 pathway. Instead, we propose that Rnf149-r acts both in parallel to the FGF-MAPK signaling on shared targets, as well as on FGF-MAPK-independent targets through (a) separate pathway(s).


FEBS Letters ◽  
2021 ◽  
Author(s):  
Kai‐Chun Chang ◽  
Christopher T. Rhodes ◽  
Jesse Q. Zhang ◽  
Madeleine C. Moseley ◽  
Sandra M. Cardona ◽  
...  

2021 ◽  
Author(s):  
Aleksandra Fergin ◽  
Gabriel Boesch ◽  
Nadja R. Greter ◽  
Simon Berger ◽  
Alex Hajnal

AbstractThe sumoylation (SUMO) pathway is involved in a variety of processes during C. elegans development, such as gonadal and vulval fate specification, cell cycle progression and maintenance of chromosome structure. The ubiquitous expression of the sumoylation machinery and its involvement in many essential processes has made it difficult to dissect the tissue-specific roles of protein sumoylation and identify the specific target proteins. To overcome these challenges, we have established tools to block protein sumoylation and degrade sumoylated target proteins in a tissue-specific and temporally controlled manner. We employed the auxin-inducible protein degradation system (AID) to down-regulate AID-tagged SUMO E3 ligase GEI-17 or the SUMO ortholog SMO-1, either in the vulval precursor cells (VPCs) or in the gonadal anchor cell (AC). Tissue-specific inhibition of GEI-17 and SMO-1 revealed diverse roles of the SUMO pathway during vulval development, such as AC positioning, basement membrane (BM) breaching, vulval cell fate specification and epithelial morphogenesis. Inhibition of sumoylation in the VPCs resulted in an abnormal shape of the vulval toroids and ectopic cell fusions. Sumoylation of the ETS transcription factor LIN-1 at K169 mediates a subset of these SUMO functions, especially the proper contraction of the ventral vulA toroids. Thus, the SUMO pathway plays diverse roles throughout vulval development.


Development ◽  
2021 ◽  
Vol 148 (22) ◽  
Author(s):  
Robert N. Kelsh ◽  
Karen Camargo Sosa ◽  
Saeed Farjami ◽  
Vsevolod Makeev ◽  
Jonathan H. P. Dawes ◽  
...  

ABSTRACT Neural crest cells are crucial in development, not least because of their remarkable multipotency. Early findings stimulated two hypotheses for how fate specification and commitment from fully multipotent neural crest cells might occur, progressive fate restriction (PFR) and direct fate restriction, differing in whether partially restricted intermediates were involved. Initially hotly debated, they remain unreconciled, although PFR has become favoured. However, testing of a PFR hypothesis of zebrafish pigment cell development refutes this view. We propose a novel ‘cyclical fate restriction’ hypothesis, based upon a more dynamic view of transcriptional states, reconciling the experimental evidence underpinning the traditional hypotheses.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (11) ◽  
pp. e1009894
Author(s):  
Qingliang Sang ◽  
Gang Wang ◽  
David B. Morton ◽  
Hui Wu ◽  
Baotong Xie

The generation of a diversity of photoreceptor (PR) subtypes with different spectral sensitivities is essential for color vision in animals. In the Drosophila eye, the Hippo pathway has been implicated in blue- and green-sensitive PR subtype fate specification. Specifically, Hippo pathway activation promotes green-sensitive PR fate at the expense of blue-sensitive PRs. Here, using a sensitized triple heterozygote-based genetic screening approach, we report the identification of the single Drosophila zonula occludens-1 (ZO-1) protein Polychaetoid (Pyd) as a new regulator of the Hippo pathway during the blue- and green-sensitive PR subtype binary fate choice. We demonstrate that Pyd acts upstream of the core components and the upstream regulator Pez in the Hippo pathway. Furthermore, We found that Pyd represses the activity of Su(dx), a E3 ligase that negatively regulates Pez and can physically interact with Pyd, during PR subtype fate specification. Together, our results identify a new mechanism underlying the Hippo signaling pathway in post-mitotic neuronal fate specification.


Cell Reports ◽  
2021 ◽  
Vol 37 (7) ◽  
pp. 109994
Author(s):  
Pin Lyu ◽  
Thanh Hoang ◽  
Clayton P. Santiago ◽  
Eric D. Thomas ◽  
Andrew E. Timms ◽  
...  

2021 ◽  
Author(s):  
Craig T Jacobs ◽  
Aarti Kejriwal ◽  
Katrinka M Kocha ◽  
Kevin Y Jin ◽  
Peng Huang

During neural development, progenitor cells generate different types of neurons in specific time windows. Despite the characterisation of many of the transcription factor networks involved in these differentiation events, the mechanism behind their temporal regulation is poorly understood. To address this question, we studied the temporal differentiation of the simple lateral floor plate (LFP) domain in the zebrafish spinal cord. LFP progenitors sequentially generate early-born Kolmer-Agduhr″ (KA″) interneurons and late-born V3 interneurons. Analysis using a Notch signalling reporter demonstrates that these cell populations have distinct Notch signalling profiles. Not only do V3 cells receive higher total levels of Notch response, but they collect this response over a longer duration compared to V3 cells. To test whether the duration of Notch signalling determines the temporal cell fate specification, we combined a transgene that constitutively activates Notch signalling in the ventral spinal cord with a heat shock inducible Notch signalling terminator to switch off Notch response at any given time. Sustained Notch signalling results in expanded LFP progenitors while KA″ and V3 interneurons fail to specify. Early termination of Notch signalling leads to exclusively KA″ cell fate, despite the high level of Notch signalling, whereas late attenuation of Notch signalling drives only V3 cell fate. This suggests that the duration of Notch signalling is instructive in cell fate specification. Interestingly, knockdown experiments reveal a role for the Notch ligand Jag2b in maintaining LFP progenitors and limiting their differentiation into KA″ and V3 cells. Our results indicate that Notch signalling is required for neural progenitor maintenance while a specific attenuation timetable defines the fate of the postmitotic progeny.


Nature ◽  
2021 ◽  
Vol 598 (7879) ◽  
pp. 205-213
Author(s):  
Ryan S. Ziffra ◽  
Chang N. Kim ◽  
Jayden M. Ross ◽  
Amy Wilfert ◽  
Tychele N. Turner ◽  
...  

AbstractDuring mammalian development, differences in chromatin state coincide with cellular differentiation and reflect changes in the gene regulatory landscape1. In the developing brain, cell fate specification and topographic identity are important for defining cell identity2 and confer selective vulnerabilities to neurodevelopmental disorders3. Here, to identify cell-type-specific chromatin accessibility patterns in the developing human brain, we used a single-cell assay for transposase accessibility by sequencing (scATAC-seq) in primary tissue samples from the human forebrain. We applied unbiased analyses to identify genomic loci that undergo extensive cell-type- and brain-region-specific changes in accessibility during neurogenesis, and an integrative analysis to predict cell-type-specific candidate regulatory elements. We found that cerebral organoids recapitulate most putative cell-type-specific enhancer accessibility patterns but lack many cell-type-specific open chromatin regions that are found in vivo. Systematic comparison of chromatin accessibility across brain regions revealed unexpected diversity among neural progenitor cells in the cerebral cortex and implicated retinoic acid signalling in the specification of neuronal lineage identity in the prefrontal cortex. Together, our results reveal the important contribution of chromatin state to the emerging patterns of cell type diversity and cell fate specification and provide a blueprint for evaluating the fidelity and robustness of cerebral organoids as a model for cortical development.


Sign in / Sign up

Export Citation Format

Share Document