scholarly journals Hepatic MIR20B promotes nonalcoholic fatty liver disease by suppressing PPARA

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Yo Han Lee ◽  
Hyun-Jun Jang ◽  
Sounkou Kim ◽  
Sun Sil Choi ◽  
Keon Woo Khim ◽  
...  

Background:Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive lipid accumulation and imbalances in lipid metabolism in the liver. Although nuclear receptors (NRs) play a crucial role in hepatic lipid metabolism, the underlying mechanisms of NR regulation in NAFLD remain largely unclear. Methods:Using network analysis and RNA-seq to determine the correlation between NRs and microRNA in human NAFLD patients, we revealed that MIR20B specifically targets PPARA. MIR20B mimic and anti-MIR20B were administered to human HepG2 and Huh-7 cells and mouse primary hepatocytes as well as high fat diet (HFD)- or methionine-deficient diet (MCD)-fed mice to verify the specific function of MIR20B in NAFLD. We tested the inhibition of the therapeutic effect of a PPARα agonist, fenofibrate, by Mir20b and the synergic effect of combination of fenofibrate with anti-Mir20b in NAFLD mouse model. Results:We revealed that MIR20B specifically targets PPARA through miRNA regulatory network analysis of nuclear receptor genes in NAFLD. The expression of MIR20B was upregulated in free fatty acid (FA)-treated hepatocytes and the livers of both obesity-induced mice and NAFLD patients. Overexpression of MIR20B significantly increased hepatic lipid accumulation and triglyceride levels. Furthermore, MIR20B significantly reduced FA oxidation and mitochondrial biogenesis by targeting PPARA. In Mir20b-introduced mice, the effect of fenofibrate to ameliorate hepatic steatosis was significantly suppressed. Finally, inhibition of Mir20b significantly increased FA oxidation and uptake, resulting in improved insulin sensitivity and a decrease in NAFLD progression. Moreover, combination of fenofibrate and anti-Mir20b exhibited the synergic effect on improvement of NAFLD in MCD-fed mice. Conclusions:Taken together, our results demonstrate that the novel MIR20B targets PPARA, plays a significant role in hepatic lipid metabolism, and present an opportunity for the development of novel therapeutics for NAFLD. Funding:This research was funded by Korea Mouse Phenotyping Project (2016M3A9D5A01952411), the National Research Foundation of Korea (NRF) grant funded by the Korea government (2020R1F1A1061267, 2018R1A5A1024340, NRF-2021R1I1A2041463, 2020R1I1A1A01074940), and the Future-leading Project Research Fund (1.210034.01) of UNIST.

2021 ◽  
Author(s):  
Yo Han Lee ◽  
Hyun-Jun Jang ◽  
Sounkou Kim ◽  
Sun Sil Choi ◽  
Keon Woo Khim ◽  
...  

Background: Non-alcoholic fatty liver disease (NAFLD) is associated with hepatic metabolic reprogramming that leads to excessive lipid accumulation and imbalances in lipid metabolism in the liver. Although nuclear receptors (NRs) play a crucial role in hepatic metabolic reprogramming, the underlying mechanisms of NR regulation in NAFLD remain largely unclear. Methods: Using network analysis and RNA-seq to determine the correlation between NRs and microRNA in NAFLD patients, we revealed that miR-20b specifically targets PPARα. miR-20b mimic and anti-miR-20b were administered to hepatocytes as well as high fat diet (HFD)- or methionine-deficient diet (MCD)-fed mice to verify the specific function of miR-20b in NAFLD. We tested the inhibition of the therapeutic effect of a PPARα agonist, fenofibrate, by miR-20b. Results: We revealed that miR-20b specifically targets PPARα through miRNA regulatory network analysis of nuclear receptor genes in NAFLD. The expression of miR-20b was upregulated in free fatty acid (FA)-treated hepatocytes and the livers of both obesity-induced mice and NAFLD patients. Overexpression of miR-20b significantly increased hepatic lipid accumulation and triglyceride levels. Furthermore, miR-20b significantly reduced FA oxidation and mitochondrial biogenesis by targeting PPARα. In miR-20b-introduced mice, the effect of fenofibrate to ameliorate hepatic steatosis was significantly suppressed. Finally, inhibition of miR-20b significantly increased FA oxidation and uptake, resulting in improved insulin sensitivity and a decrease in NAFLD progression. Conclusions: Taken together, our results demonstrate that the novel miR-20b targets PPARα, plays a significant role in hepatic lipid metabolism, and present an opportunity for the development of novel therapeutics for NAFLD. Funding: This research was funded by Korea Mouse Phenotyping Project (2016M3A9D5A01952411), the National Research Foundation of Korea (NRF) grant funded by the Korea government (2020R1F1A1061267, 2018R1A5A1024340), the Future-leading Project Research Fund (1.210034.01) of UNIST and the National Research Foundation of Korea (NRF) grant funded by the Korea government (2020R1I1A1A01074940).


2016 ◽  
Vol 35 (1) ◽  
pp. 175-182 ◽  
Author(s):  
Prasanthi Jegatheesan ◽  
Stéphanie Beutheu ◽  
Gabrielle Ventura ◽  
Gilles Sarfati ◽  
Esther Nubret ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document