Lipid Metabolism
Recently Published Documents


TOTAL DOCUMENTS

16542
(FIVE YEARS 7153)

H-INDEX

177
(FIVE YEARS 57)

2021 ◽  
pp. 1-19
Author(s):  
Neha Sharma ◽  
Oliver C. Watkins ◽  
Anne H.Y. Chu ◽  
W. Cutfield ◽  
Keith M. Godfrey ◽  
...  

Abstract The incidence of preterm birth (PTB), delivery before 37 completed weeks of gestation, is rising in most countries. Several recent small clinical trials of myo-inositol supplementation in pregnancy, which were primarily aimed at preventing gestational diabetes, have suggested an effect on reducing the incidence of PTB as a secondary outcome, highlighting the potential role of myo-inositol as a preventive agent. However, the underlying molecular mechanisms by which myo-inositol might be able to do so remain unknown; these may occur through directly influencing the onset and progress of labour, or by suppressing stimuli that trigger or promote labour. This paper presents hypotheses outlining the potential role of uteroplacental myo-inositol in human parturition and explains possible underlying molecular mechanisms by which myo-inositol might modulate the uteroplacental environment and inhibit preterm labour-onset. We suggest that a physiological decline in uteroplacental inositol levels to a critical threshold with advancing gestation, in concert with an increasingly pro-inflammatory uteroplacental environment, permits spontaneous membrane rupture and labour-onset. A higher uteroplacental inositol level, potentially promoted by maternal myo-inositol supplementation, might affect lipid metabolism, eicosanoid production, and secretion of pro-inflammatory chemocytokines, that overall dampen the pro-labour uteroplacental environment responsible for labour-onset and progress, thus, reducing the risk of PTB. Understanding how and when inositol may act to reduce PTB risk would facilitate the design of future clinical trials of maternal myo-inositol supplementation and definitively address the efficacy of myo-inositol prophylaxis against PTB.


2021 ◽  
Vol 12 ◽  
Author(s):  
Aiwen Pi ◽  
Kai Jiang ◽  
Qinchao Ding ◽  
Shanglei Lai ◽  
Wenwen Yang ◽  
...  

Background: Alcoholic liver disease (ALD) caused by chronic ethanol overconsumption is a common type of liver disease with a severe mortality burden throughout the world. The pathogenesis of ALD is complex, and no effective clinical treatment for the disease has advanced so far. Prolonged alcohol abstinence is the most effective therapy to attenuate the clinical course of ALD and even reverse liver damage. However, the molecular mechanisms involved in alcohol abstinence-improved recovery from alcoholic fatty liver remain unclear. This study aims to systematically evaluate the beneficial effect of alcohol abstinence on pathological changes in ALD.Methods: Using the Lieber-DeCarli mouse model of ALD, we analysed whether 1-week alcohol withdrawal reversed alcohol-induced detrimental alterations, including oxidative stress, liver injury, lipids metabolism, and hepatic inflammation, by detecting biomarkers and potential targets.Results: Alcohol withdrawal ameliorated alcohol-induced hepatic steatosis by improving liver lipid metabolism reprogramming via upregulating phosphorylated 5′-AMP -activated protein kinase (p-AMPK), peroxisome proliferator-activated receptor-α (PPAR-α), and carnitine palmitoyltransferase-1 (CPT-1), and downregulating fatty acid synthase (FAS) and diacylglycerol acyltransferase-2 (DGAT-2). The activities of antioxidant enzymes, including superoxide dismutase (SOD) and glutathione peroxidase (GSH-px), were significantly enhanced by alcohol withdrawal. Importantly, the abstinence recovered alcohol-fed induced liver injury, as evidenced by the improvements in haematoxylin and eosin (H&E) staining, plasma alanine aminotransferase (ALT) levels, and liver weight/body weight ratio. Alcohol-stimulated toll-like receptor 4/mitogen-activated protein kinases (TLR4/MAPKs) were significantly reversed by alcohol withdrawal, which might mechanistically contribute to the amelioration of liver injury. Accordingly, the hepatic inflammatory factor represented by tumour necrosis factor-alpha (TNF-α) was improved by alcohol abstinence.Conclusion: In summary, we reported that alcohol withdrawal effectively restored hepatic lipid metabolism and reversed liver injury and inflammation by improving metabolism reprogramming. These findings enhanced our understanding of the biological mechanisms involved in the beneficial role of alcohol abstinence as an effective treatment for ALD.


2021 ◽  
Vol 12 ◽  
Author(s):  
Biao Li ◽  
Jinzeng Yang ◽  
Yan Gong ◽  
Yu Xiao ◽  
Qinghua Zeng ◽  
...  

Liver is an important metabolic organ of mammals. During each transitional period of life, liver metabolism is programmed by a complex molecular regulatory system for multiple physiological functions, many pathways of which are regulated by hormones and cytokines, nuclear receptors, and transcription factors. To gain a comprehensive and unbiased molecular understanding of liver growth and development in Ningxiang pigs, we analyzed the mRNA, microRNA (miRNA), and proteomes of the livers of Ningxiang pigs during lactation, nursery, and fattening periods. A total of 22,411 genes (19,653 known mRNAs and 2758 novel mRNAs), 1122 miRNAs (384 known miRNAs and 738 novel miRNAs), and 1123 unique proteins with medium and high abundance were identified by high-throughput sequencing and mass spectrometry. We show that the differences in transcriptional, post-transcriptional, or protein levels were readily identified by comparing different time periods, providing evidence that functional changes that may occur during liver development are widespread. In addition, we found many overlapping differentially expressed genes (DEGs)/differentially expressed miRNAs (DEMs)/differentially expressed proteins (DEPs) related to glycolipid metabolism in any group comparison. These overlapping DEGs/DEMs/DGPs may play an important role in functional transformation during liver development. Short Time-series Expression Miner (STEM) analysis revealed multiple expression patterns of mRNA, miRNA, and protein in the liver. Furthermore, several diverse key Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, including immune defense, glycolipid metabolism, protein transport and uptake, and cell proliferation and development, were identified by combined analysis of DEGs and DGPs. A number of predicted miRNA–mRNA–protein pairs were found and validated by qRT-PCR and parallel reaction monitoring (PRM) assays. The results provide new and important information about the genetic breeding of Ningxiang pigs, which represents a foundation for further understanding the molecular regulatory mechanisms of dynamic development of liver tissue, functional transformation, and lipid metabolism.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Weizhang Jia ◽  
Qina Su ◽  
Qiong Cheng ◽  
Qiong Peng ◽  
Aimin Qiao ◽  
...  

Palmatine is a naturally occurring isoquinoline alkaloid that has been reported to display neuroprotective effects against amyloid-β- (Aβ-) induced neurotoxicity. However, the mechanisms underlying the neuroprotective activities of palmatine remain poorly characterized in vivo. We employed transgenic Caenorhabditis elegans models containing human Aβ1-42 to investigate the effects and possible mechanisms of palmatine-mediated neuroprotection. Treatment with palmatine significantly delayed the paralytic process and reduced the elevated reactive oxygen species levels in Aβ-transgenic C. elegans. In addition, it increased oxidative stress resistance without affecting the lifespan of wild-type C. elegans. Pathway analysis suggested that the differentially expressed genes were related mainly to aging, detoxification, and lipid metabolism. Real-time PCR indicated that resistance-related genes such as sod-3 and shsp were significantly upregulated, while the lipid metabolism-related gene fat-5 was downregulated. Further studies demonstrated that the inhibitory effects of palmatine on Aβ toxicity were attributable to the free radical-scavenging capacity and that the upregulated expression of resistance-related genes, especially shsp, whose expression was regulated by HSF-1, played crucial roles in protecting cells from Aβ-induced toxicity. The research showed that there were significantly fewer Aβ deposits in transgenic CL2006 nematodes treated with palmatine than in control nematodes. In addition, our study found that Aβ-induced toxicity was accompanied by dysregulation of lipid metabolism, leading to excessive fat accumulation in Aβ-transgenic CL4176 nematodes. The alleviation of lipid disorder by palmatine should be attributed not only to the reduction in fat synthesis but also to the inhibition of Aβ aggregation and toxicity, which jointly maintained metabolic homeostasis. This study provides new insights into the in vivo neuroprotective effects of palmatine against Aβ aggregation and toxicity and provides valuable targets for the prevention and treatment of AD.


Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 3204
Author(s):  
Yoshimi Nakagawa ◽  
Masaya Araki ◽  
Song-iee Han ◽  
Yuhei Mizunoe ◽  
Hitoshi Shimano

Cyclic AMP-responsive element-binding protein H (CREBH, encoded by CREB3L3) is a membrane-bound transcriptional factor expressed in the liver and small intestine. The activity of CREBH is regulated not only at the transcriptional level but also at the posttranslational level. CREBH governs triglyceride metabolism in the liver by controlling gene expression, with effects including the oxidation of fatty acids, lipophagy, and the expression of apolipoproteins related to the lipoprotein lipase activation and suppression of lipogenesis. The activation and functions of CREBH are controlled in response to the circadian rhythm. On the other hand, intestinal CREBH downregulates the absorption of lipids from the diet. CREBH deficiency in mice leads to severe hypertriglyceridemia and fatty liver in the fasted state and while feeding a high-fat diet. Therefore, when crossing CREBH knockout (KO) mice with an atherosclerosis model, low-density lipoprotein receptor KO mice, these mice exhibit severe atherosclerosis. This phenotype is seen in both liver- and small intestine-specific CREBH KO mice, suggesting that CREBH controls lipid homeostasis in an enterohepatic interaction. This review highlights that CREBH has a crucial role in systemic lipid homeostasis to integrate cellular functions related to lipid metabolism.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1229
Author(s):  
Chen-Hua Huang ◽  
Yi-Long Huang ◽  
Zhao-Qing Shen ◽  
Chao-Hsiung Lin ◽  
Ting-Fen Tsai

Cisd2 (CDGSH iron sulfur domain 2) is a pro-longevity gene that extends the lifespan and health span of mice, ameliorates age-associated structural damage and limits functional decline in multiple tissues. Non-alcoholic fatty liver disease (NAFLD), which plays an important role in age-related liver disorders, is the most common liver disease worldwide. However, no medicines that can be used to specifically and effectively treat NAFLD are currently approved for this disease. Our aim was to provide pathological and molecular evidence to show that Cisd2 protects the liver from age-related dysregulation of lipid metabolism and protein homeostasis. This study makes four major discoveries. Firstly, a persistently high level of Cisd2 protects the liver from age-related fat accumulation. Secondly, proteomics analysis revealed that Cisd2 ameliorates age-related dysregulation of lipid metabolism, including lipid biosynthesis and β-oxidation, in mitochondria and peroxisomes. Thirdly, Cisd2 attenuates aging-associated oxidative modifications of proteins. Finally, Cisd2 regulates intracellular protein homeostasis by maintaining the functionality of molecular chaperones and protein synthesis machinery. Our proteomics findings highlight Cisd2 as a novel molecular target for the development of therapies targeting fatty liver diseases, and these new therapies are likely to help prevent subsequent malignant progression to cirrhosis and hepatocellular carcinoma.


2021 ◽  
Vol 11 ◽  
Author(s):  
Xiaochen Qi ◽  
Quanlin Li ◽  
Xiangyu Che ◽  
Qifei Wang ◽  
Guangzhen Wu

Kidney cancer is a cancer with an increasing incidence in recent years. Clear cell renal cell carcinoma (ccRCC) accounts for up to 80% of all kidney cancers. The understanding of the pathogenesis, tumor progression, and metastasis of renal carcinoma is not yet perfect. Kidney cancer has some characteristics that distinguish it from other cancers, and the metabolic aspect is the most obvious. The specificity of glucose and lipid metabolism in kidney cancer cells has also led to its being studied as a metabolic disease. As the most common type of kidney cancer, ccRCC has many characteristics that represent the specificity of kidney cancer. There are features that we are very concerned about, including the presence of lipid droplets in cells and the obesity paradox. These two points are closely related to glucose metabolism and lipid metabolism. Therefore, we hope to explore whether metabolic changes affect the occurrence and development of kidney cancer by looking for evidence of changes on expression at the genomic and protein levels in glucose metabolism and lipid metabolism in ccRCC. We begin with the representative phenomenon of abnormal cancer metabolism: the Warburg effect, through the collection of popular metabolic pathways and related genes in the last decade, as well as some research hotspots, including the role of ferroptosis and glutamine in cancer, systematically elaborated the factors affecting the incidence and metastasis of kidney cancer. This review also identifies the similarities and differences between kidney cancer and other cancers in order to lay a theoretical foundation and provide a valid hypothesis for future research.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrea Costa ◽  
Bàrbara Reynés ◽  
Jadwiga Konieczna ◽  
Marian Martín ◽  
Miquel Fiol ◽  
...  

AbstractPeripheral blood mononuclear cells (PBMC) are widely used as a biomarker source in nutrition/obesity studies because they reflect gene expression profiles of internal tissues. In this pilot proof-of-concept study we analysed in humans if, as we previously suggested in rodents, PBMC could be a surrogate tissue to study overweight/obesity impact on lipid metabolism. Pre-selected key lipid metabolism genes based in our previous preclinical studies were analysed in PBMC of normoglycemic normal-weight (NW), and overweight-obese (OW-OB) subjects before and after a 6-month weight-loss plan. PBMC mRNA levels of CPT1A, FASN and SREBP-1c increased in the OW-OB group, according with what described in liver and adipose tissue of humans with obesity. This altered expression pattern was related to increased adiposity and early signs of metabolic impairment. Greater weight loss and/or metabolic improvement as result of the intervention was related to lower CPT1A, FASN and SREBP-1c gene expression in an adjusted linear mixed-effects regression analysis, although no gene expression recovery was observed when considering mean comparisons. Thus, human PBMC reflect lipid metabolism expression profile of energy homeostatic tissues, and early obesity-related alterations in metabolic at-risk subjects. Further studies are needed to understand PBMC usefulness for analysis of metabolic recovery in weigh management programs.


Sign in / Sign up

Export Citation Format

Share Document