scholarly journals ANTH domains within CALM, HIP1R, and Sla2 recognize ubiquitin internalization signals

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Natalya Pashkova ◽  
Lokesh Gakhar ◽  
Liping Yu ◽  
Nicholas J Schnicker ◽  
Annabel Y Minard ◽  
...  

Attachment of ubiquitin (Ub) to cell surface proteins serves as a signal for internalization via clathrin-mediated endocytosis (CME). How ubiquitinated membrane proteins engage the internalization apparatus remains unclear. The internalization apparatus contains proteins such as Epsin and Eps15, which bind Ub, potentially acting as adaptors for Ub-based internalization signals. Here we show that additional components of the endocytic machinery including CALM, HIP1R, and Sla2 bind Ub via their N-terminal ANTH domain, a domain belonging to the superfamily of ENTH and VHS domains. Structural studies revealed that Ub binds with µM affinity to a unique C-terminal region within the ANTH domain not found in ENTH domains. Functional studies showed that combined loss of Ub-binding by ANTH-domain proteins and other Ub-binding domains within the yeast internalization apparatus caused defects in the Ub-dependent internalization of the GPCR Ste2 that was engineered to rely exclusively on Ub as an internalization signal. In contrast, these mutations had no effect on the internalization of Ste2 engineered to use an alternate Ub-independent internalization signal. These studies define new components of the internalization machinery that work collectively with Epsin and Eps15 to specify recognition of Ub as an internalization signal.

2019 ◽  
Author(s):  
Bernadette Jeremiasse ◽  
Csaba Matta ◽  
Christopher R. Fellows ◽  
David J. Boocock ◽  
Julia R. Smith ◽  
...  

Abstract Background: Chondrocytes are exposed to an inflammatory micro-environment in the extracellular matrix (ECM) of articular cartilage in joint diseases such as osteoarthritis (OA) and rheumatoid arthritis (RA). In OA, degenerative changes and low-grade inflammation within the joint transform the behaviour and metabolism of chondrocytes, disturb the balance between ECM synthesis and degradation, and alter the osmolality and ionic composition of the micro-environment. We hypothesize that chondrocytes adjust their physiology to the inflammatory microenvironment by modulating the expression of cell surface proteins, collectively referred to as the ‘surfaceome’. Therefore, the aim of this study was to characterize the surfaceome of primary equine chondrocytes isolated from healthy joints following exposure to the pro-inflammatory cytokines interleukin-1-beta (IL-1β) and tumour necrosis factor-alpha (TNF-α). Methods: We employed combined methodology that we recently developed for investigating the surfaceome in stem cells. Membrane proteins were isolated using an aminooxy-biotinylation technique and analysed by mass spectrometry using high throughput shotgun proteomics. Results: Amongst the 431 unique cell surface proteins identified, a high percentage of low-abundance proteins, such as ion channels, receptors and transporter molecules were detected. Data are available via ProteomeXchange with identifier PXD014773. A high number of proteins exhibited different levels of expression following chondrocyte stimulation with pro-inflammatory cytokines.LPR-1, thrombospondin, VDAC1-2 and annexin A1 were considered to be of special interest and were analysed further and validated by western blotting. Conclusions: Our results provide, for the first time, a repository for proteomic data on differentially expressed low-abundance membrane proteins on the surface of chondrocytes in response to pro-inflammatory stimuli.


Author(s):  
Watt W. Webb

Plasma membrane heterogeneity is implicit in the existence of specialized cell surface organelles which are necessary for cellular function; coated pits, post and pre-synaptic terminals, microvillae, caveolae, tight junctions, focal contacts and endothelial polarization are examples. The persistence of these discrete molecular aggregates depends on localized restraint of the constituent molecules within specific domaines in the cell surface by strong intermolecular bonds and/or anchorage to extended cytoskeleton. The observed plasticity of many of organelles and the dynamical modulation of domaines induced by cellular signaling evidence evanescent intermolecular interactions even in conspicuous aggregates. There is also strong evidence that universal restraints on the mobility of cell surface proteins persist virtually everywhere in cell surfaces, not only in the discrete organelles. Diffusion of cell surface proteins is slowed by several orders of magnitude relative to corresponding protein diffusion coefficients in isolated lipid membranes as has been determined by various ensemble average methods of measurement such as fluorescence photobleaching recovery(FPR).


Sign in / Sign up

Export Citation Format

Share Document