scholarly journals Free-Energy Functional Approach to Inverse Problems for Self-Assembly of Three-Dimensional Crystals

2021 ◽  
Vol 90 (2) ◽  
pp. 024603
Author(s):  
Masashi Torikai
Author(s):  
Olivier Ozenda ◽  
Epifanio G. Virga

AbstractThe Kirchhoff-Love hypothesis expresses a kinematic constraint that is assumed to be valid for the deformations of a three-dimensional body when one of its dimensions is much smaller than the other two, as is the case for plates. This hypothesis has a long history checkered with the vicissitudes of life: even its paternity has been questioned, and recent rigorous dimension-reduction tools (based on standard $\varGamma $ Γ -convergence) have proven to be incompatible with it. We find that an appropriately revised version of the Kirchhoff-Love hypothesis is a valuable means to derive a two-dimensional variational model for elastic plates from a three-dimensional nonlinear free-energy functional. The bending energies thus obtained for a number of materials also show to contain measures of stretching of the plate’s mid surface (alongside the expected measures of bending). The incompatibility with standard $\varGamma $ Γ -convergence also appears to be removed in the cases where contact with that method and ours can be made.


1980 ◽  
Vol 33 (9) ◽  
pp. 2013 ◽  
Author(s):  
S Nordholm ◽  
ADJ Haymet

A generalized van der Waals theory is derived on the basis of simple physical and mathematical arguments. The derivation results in a free- energy functional wherein the independent variable is a coarse-grained particle density. It is assumed that a well defined particle density dominates the free energy and this density is to be obtained by minimizing the free energy functional. The variational theory so obtained can be applied to non-uniform fluids. In the present work the possibility of stable non-uniform structure is neglected and the theory is applied to uniform fluids. It then produces an equation of state identical in form to that proposed originally by van der Waals but the excluded volume is only about half as large in the three-dimensional case. Applications to several two- and three-dimensional systems indicate that the new equation of state is a distinct improvement over the traditional van der Waals theory when the full range of fluid densities is considered. The quantitative accuracy in the case of simple uniform fluids is sufficient to warrant further development and exploitation of the theory.


2005 ◽  
Vol 04 (03) ◽  
pp. 751-767 ◽  
Author(s):  
G. N. CHUEV ◽  
M. V. FEDOROV ◽  
H. J. LUO ◽  
D. KOLB ◽  
E. G. TIMOSHENKO

Three-dimensional discrete tensor wavelets are applied to calculate wave functions of excess electrons solvated in polar liquids. Starting from the Hartree–Fock approximation for the electron wave functions and from the linear response to the solute charge for the solvent, we have derived the approximate free energy functional for the excess electrons. The orthogonal Coifman basis set is used to minimize the free energy functional and to approximate the electron wave functions. The scheme is applied to the calculation of the properties of the solvated electron and the singlet bipolaron formation. The obtained results indicate that the proposed algorithm is fast and rather efficient for calculating the electronic structure of the solvated molecular solutes.


Nonlinearity ◽  
2009 ◽  
Vol 22 (12) ◽  
pp. 2919-2952 ◽  
Author(s):  
E A Carlen ◽  
M C Carvalho ◽  
R Esposito ◽  
J L Lebowitz ◽  
R Marra

2006 ◽  
Vol 16 (2) ◽  
pp. 233-264 ◽  
Author(s):  
E. A. Carlen ◽  
M. C. Carvalho ◽  
R. Esposito ◽  
J. L. Lebowitz ◽  
R. Marra

Author(s):  
François Alouges ◽  
Giovanni Di Fratta

The objective of this paper is to perform, by means of Γ - convergence and two-scale convergence , a rigorous derivation of the homogenized Gibbs–Landau free energy functional associated with a composite periodic ferromagnetic material, i.e. a ferromagnetic material in which the heterogeneities are periodically distributed inside the media. We thus describe the Γ -limit of the Gibbs–Landau free energy functional, as the period over which the heterogeneities are distributed inside the ferromagnetic body shrinks to zero.


Sign in / Sign up

Export Citation Format

Share Document