scholarly journals Hybrid demodulation method for distributed acoustic sensing based on coherent detection and pulse pair

2020 ◽  
Vol 13 (1) ◽  
pp. 012012 ◽  
Author(s):  
Wenjie Chen ◽  
Junfeng Jiang ◽  
Shuang Wang ◽  
Kun Liu ◽  
Zhe Ma ◽  
...  
Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3753 ◽  
Author(s):  
Fei Jiang ◽  
Zixiao Lu ◽  
Feida Cai ◽  
Honglang Li ◽  
Zhenhai Zhang ◽  
...  

Distributed acoustic sensing based on phase-sensitive optical time-domain reflectometry (Φ-OTDR) has been widely used in many fields. Phase demodulation of the Φ-OTDR signal is essential for undistorted acoustic measurement. Digital coherent detection is a universal method to implement phase demodulation, but it may cause severe computational burden. In this paper, analog I/Q demodulation is introduced into the Φ-OTDR based DAS system to solve this problem, which can directly obtain the I and Q components of the beat signal without any digital processing, meaning that the computational cost can be sharply reduced. Besides, the sampling frequency of the data acquisition card can theoretically be lower than the beat frequency as the spectrum aliasing would not affect the demodulation results, thus further reducing the data volume of the system. Experimental results show that the proposed DAS system can demodulate the phase signal with good linearity and wide frequency response range. It can also adequately recover the sound signal sensed by the optical fiber, indicating that it can be a promising solution for computational-cost-sensitive distributed acoustic sensing applications.


Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4368 ◽  
Author(s):  
María R. Fernández-Ruiz ◽  
Luis Costa ◽  
Hugo F. Martins

In 2016, a novel interrogation technique for phase-sensitive (Φ)OTDR was mathematically formalized and experimentally demonstrated, based on the use of a chirped-pulse as a probe, in an otherwise direct-detection-based standard setup: chirped-pulse (CP-)ΦOTDR. Despite its short lifetime, this methodology has now become a reference for distributed acoustic sensing (DAS) due to its valuable advantages with respect to conventional (i.e., coherent-detection or frequency sweeping-based) interrogation strategies. Presenting intrinsic immunity to fading points and using direct detection, CP-ΦOTDR presents reliable high sensitivity measurements while keeping the cost and complexity of the setup bounded. Numerous technique analyses and contributions to study/improve its performance have been recently published, leading to a solid, highly competitive and extraordinarily simple method for distributed fibre sensing. The interesting sensing features achieved in these last years CP-ΦOTDR have motivated the use of this technology in diverse applications, such as seismology or civil engineering (monitoring of pipelines, train rails, etc.). Besides, new areas of application of this distributed sensor have been explored, based on distributed chemical (refractive index) and temperature-based transducer sensors. In this review, the principle of operation of CP-ΦOTDR is revisited, highlighting the particular performance characteristics of the technique and offering a comparison with alternative distributed sensing methods (with focus on coherent-detection-based ΦOTDR). The sensor is also characterized for operation in up to 100 km with a low cost-setup, showing performances close to the attainable limits for a given set of signal parameters [≈tens-hundreds of pe/sqrt(Hz)]. The areas of application of this sensing technology employed so far are briefly outlined in order to frame the technology.


2021 ◽  
Author(s):  
Sara Klaasen ◽  
Patrick Paitz ◽  
Jan Dettmer ◽  
Andreas Fichtner

<p>We present one of the first applications of Distributed Acoustic Sensing (DAS) in a volcanic environment. The goals are twofold: First, we want to examine the feasibility of DAS in such a remote and extreme environment, and second, we search for active volcanic signals of Mount Meager in British Columbia (Canada). </p><p>The Mount Meager massif is an active volcanic complex that is estimated to have the largest geothermal potential in Canada and caused its largest recorded landslide in 2010. We installed a 3-km long fibre-optic cable at 2000 m elevation that crosses the ridge of Mount Meager and traverses the uppermost part of a glacier, yielding continuous measurements from 19 September to 17 October 2019.</p><p>We identify ~30 low-frequency (0.01-1 Hz) and 3000 high-frequency (5-45 Hz) events. The low-frequency events are not correlated with microseismic ocean or atmospheric noise sources and volcanic tremor remains a plausible origin. The frequency-power distribution of the high-frequency events indicates a natural origin, and beamforming on these events reveals distinct event clusters, predominantly in the direction of the main peaks of the volcanic complex. Numerical examples show that we can apply conventional beamforming to the data, and that the results are improved by taking the signal-to-noise ratio of individual channels into account.</p><p>The increased data quantity of DAS can outweigh the limitations due to the lower quality of individual channels in these hazardous and remote environments. We conclude that DAS is a promising tool in this setting that warrants further development.</p>


2021 ◽  
Author(s):  
Fabian Walter ◽  
Patrick Paitz ◽  
Andreas Fichtner ◽  
Pascal Edme ◽  
Wojciech Gajek ◽  
...  

<p>Over the past 1-2 decades, seismological measurements have provided new and unique insights into glacier and ice sheet dynamics. At the same time, sensor coverage is typically limited in harsh glacial environments with littile or no access. Turning kilometer-long fiber optic cables placed on the Earth’s surface into thousands of seismic sensors, Distributed Acoustic Sensing (DAS) may overcome the limitation of sensor coverage in the cryosphere.</p><p>First DAS applications on the Greenland and Antarctic ice sheets and on Alpine glacier ice have highlighted the technique’s superiority. Signals of natural and man-made seismic sources can be resolved with an unrivaled level of detail. This offers glaciologists new perspectives to interpret their seismograms in terms of ice structure, basal boundary conditions and source locations. However, previous studies employed only relatively small network scales with a point-like borehole deployment or < 1 km cable aperture at the ice surface.</p><p>Here we present a DAS installation, which aims to cover the majority of an Alpine glacier catchment: For one month in summer 2020 we deployed a 9 km long fiber optic cable on Rhonegletscher, Switzerland, and gathered continuous DAS data. The cable followed the glacier’s central flow line starting in the lowest kilometer of the ablation zone and extending well into the accumulation area. Even for a relatively small mountain glacier such as Rhonegletscher, cable deployment was a considerable logistical challenge. However, initial data analysis illustrates the benefit compared to conventional cryoseismological instrumentation: DAS measurements capture ground deformation over many octaves, including typical high-frequency englacial sources (10s to 100s of Hz) related to crevasse formation and basal sliding as well as long period signals (10s to 100s of seconds) of ice deformation. Depending on the presence of a snow cover, DAS records contain strong environmental noise (wind, meltwater flow, precipitation) and thus exhibit lower signal-to-noise ratios compared to conventional on-ice seismic installations. This is nevertheless outweighed by the advantage of monitoring ground unrest and ice deformation of nearly an entire glacier. We present a first compilation of signal and noise records and discuss future directions to leverage DAS data sets in glaciological research.</p><p> </p><p> </p><p> </p>


2021 ◽  
Author(s):  
Zhongwen Zhan ◽  
Mattia Cantono ◽  
Jorge Castellanos ◽  
Miguel González Herráez ◽  
Zhensheng Jia ◽  
...  

<p>The oceans present a major gap in geophysical instrumentation, hindering fundamental research on submarine earthquakes and the Earth’s interior structure, as well as effective earthquake and tsunami warning for offshore events. Emerging fiber-optic sensing technologies that can leverage submarine telecommunication cables present an new opportunity in filling the data gap. Marra et al. (2018) turned a 96 km long submarine cable into a sensitive seismic sensor using ultra-stable laser interferometry of a round-tripped signal. Another technology, Distributed Acoustic Sensing (DAS), interrogates intrinsic Rayleigh backscattering and converts tens of kilometers of dedicated fiber into thousands of seismic strainmeters on the seafloor (e.g., Lindsey et al., 2019; Sladen et al., 2019; Williams et al., 2019; Spica et al., 2020). Zhan et al. (2021) successfully sensed seismic and water waves over a 10,000 km long submarine cable connecting Los Angeles and Valparaiso, by monitoring the polarization of regular optical telecommunication channels. However, these new technologies have substantially different levels of sensitivity, coverage, spatial resolution, and scalability. In this talk, we advocate that strategic combinations of the different sensing techniques (including conventional geophysical networks) are necessary to provide the broadest coverage of the seafloor while making high-fidelity, physically interpretable measurements. Strategic collaborations between the geophysics community and telecommunication community without burdening the telecomm operation (e.g., by multiplexing or using regular telecom signals) will be critical to the long term success.</p><p> </p><p>Marra, G., C. Clivati, R. Luckett, A. Tampellini, J. Kronjäger, L. Wright, A. Mura, F. Levi, S. Robinson, A. Xuereb, B. Baptie, D. Calonico, 2018. Ultrastable laser interferometry for earthquake detection with terrestrial and submarine cables. Science, eaat4458.</p><p>Lindsey, N.J., T. C. Dawe, J. B. Ajo-Franklin, 2019. Illuminating seafloor faults and ocean dynamics with dark fiber distributed acoustic sensing. Science. <strong>366</strong>, 1103–1107.</p><p>Sladen, A., D. Rivet, J. P. Ampuero, L. De Barros, Y. Hello, G. Calbris, P. Lamare, 2019. Distributed sensing of earthquakes and ocean-solid Earth interactions on seafloor telecom cables. Nat Commun. <strong>10</strong>, 5777.</p><p>Spica, Z.J., Nishida, K., Akuhara, T., Pétrélis, F., Shinohara, M. and Yamada, T., 2020. Marine Sediment Characterized by Ocean‐Bottom Fiber‐Optic Seismology. Geophysical Research Letters, 47(16), p.e2020GL088360.</p><p>Williams, E.F., M. R. Fernández-Ruiz, R. Magalhaes, R. Vanthillo, Z. Zhan, M. González-Herráez, H. F. Martins, 2019. Distributed sensing of microseisms and teleseisms with submarine dark fibers. Nat Commun. <strong>10</strong>, 5778.</p><p>Zhan, Z., M. Cantono, V. Kamalov, A. Mecozzi, R. Muller, S. Yin, J.C. Castellanos, 2021. Optical polarization-based seismic and water wave sensing on transoceanic cables. Science, in press.</p>


Sign in / Sign up

Export Citation Format

Share Document