scholarly journals A Study on Optimization of the Global-Correlation-Based Objective Function for the Simultaneous-Source Full Waveform Inversion with Streamer-Type Data

2012 ◽  
Vol 15 (3) ◽  
pp. 129-135 ◽  
Author(s):  
Woo-Hyun Son ◽  
Suk-Joon Pyun ◽  
Dong-Hyuk Jang ◽  
Yun-Hui Park
2012 ◽  
Author(s):  
Woohyun Son ◽  
Sukjoon Pyun ◽  
Woodon Jeong ◽  
Dong-Joo Min

Geophysics ◽  
2018 ◽  
Vol 83 (2) ◽  
pp. R117-R127 ◽  
Author(s):  
Yuanyuan Li ◽  
Yunseok Choi ◽  
Tariq Alkhalifah ◽  
Zhenchun Li ◽  
Kai Zhang

Conventional full-waveform inversion (FWI) based on the least-squares misfit function faces problems in converging to the global minimum when using gradient methods because of the cycle-skipping phenomena. An initial model producing data that are at most a half-cycle away from the observed data is needed for convergence to the global minimum. Low frequencies are helpful in updating low-wavenumber components of the velocity model to avoid cycle skipping. However, low enough frequencies are usually unavailable in field cases. The multiplication of wavefields of slightly different frequencies adds artificial low-frequency components in the data, which can be used for FWI to generate a convergent result and avoid cycle skipping. We generalize this process by multiplying the wavefield with itself and then applying a smoothing operator to the multiplied wavefield or its square to derive the nonlinearly smoothed wavefield, which is rich in low frequencies. The global correlation-norm-based objective function can mitigate the dependence on the amplitude information of the nonlinearly smoothed wavefield. Therefore, we have evaluated the use of this objective function when using the nonlinearly smoothed wavefield. The proposed objective function has much larger convexity than the conventional objective functions. We calculate the gradient of the objective function using the adjoint-state technique, which is similar to that of the conventional FWI except for the adjoint source. We progressively reduce the smoothing width applied to the nonlinear wavefield to naturally adopt the multiscale strategy. Using examples on the Marmousi 2 model, we determine that the proposed FWI helps to generate convergent results without the need for low-frequency information.


Geophysics ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. R201-R211 ◽  
Author(s):  
Zedong Wu ◽  
Tariq Alkhalifah

Standard full-waveform inversion (FWI) attempts to minimize the difference between observed and modeled data. However, this difference is obviously sensitive to the amplitude of observed data, which leads to difficulties because we often do not process data in absolute units and because we usually do not consider density variations, elastic effects, or more complicated physical phenomena. Global correlation methods can remove the amplitude influence for each trace and thus can mitigate such difficulties in some sense. However, this approach still suffers from the well-known cycle-skipping problem, leading to a flat objective function when observed and modeled data are not correlated well enough. We optimize based on maximizing not only the zero-lag global correlation but also time or space lags of the modeled data to circumvent the half-cycle limit. We use a weighting function that is maximum value at zero lag and decays away from zero lag to balance the role of the lags. The resulting objective function is less sensitive to the choice of the maximum lag allowed and has a wider region of convergence compared with standard FWI. Furthermore, we develop a selective function, which passes to the gradient calculation only positive correlations, to mitigate cycle skipping. Finally, the resulting algorithm has better convergence behavior than conventional methods. Application to the Marmousi model indicates that this method converges starting with a linearly increasing velocity model, even with data free of frequencies less than 3.5 Hz. Application to the SEG2014 data set demonstrates the potential of our method.


2013 ◽  
Vol 56 (5) ◽  
pp. 685-703
Author(s):  
DONG Liang-Guo ◽  
CHI Ben-Xin ◽  
TAO Ji-Xia ◽  
LIU Yu-Zhu

Geophysics ◽  
2018 ◽  
Vol 83 (1) ◽  
pp. R1-R11 ◽  
Author(s):  
Dmitry Borisov ◽  
Ryan Modrak ◽  
Fuchun Gao ◽  
Jeroen Tromp

Full-waveform inversion (FWI) is a powerful method for estimating the earth’s material properties. We demonstrate that surface-wave-driven FWI is well-suited to recovering near-surface structures and effective at providing S-wave speed starting models for use in conventional body-wave FWI. Using a synthetic example based on the SEG Advanced Modeling phase II foothills model, we started with an envelope-based objective function to invert for shallow large-scale heterogeneities. Then we used a waveform-difference objective function to obtain a higher-resolution model. To accurately model surface waves in the presence of complex tomography, we used a spectral-element wave-propagation solver. Envelope misfit functions are found to be effective at minimizing cycle-skipping issues in surface-wave inversions, and surface waves themselves are found to be useful for constraining complex near-surface features.


Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. R553-R563
Author(s):  
Sagar Singh ◽  
Ilya Tsvankin ◽  
Ehsan Zabihi Naeini

The nonlinearity of full-waveform inversion (FWI) and parameter trade-offs can prevent convergence toward the actual model, especially for elastic anisotropic media. The problems with parameter updating become particularly severe if ultra-low-frequency seismic data are unavailable, and the initial model is not sufficiently accurate. We introduce a robust way to constrain the inversion workflow using borehole information obtained from well logs. These constraints are included in the form of rock-physics relationships for different geologic facies (e.g., shale, sand, salt, and limestone). We develop a multiscale FWI algorithm for transversely isotropic media with a vertical symmetry axis (VTI media) that incorporates facies information through a regularization term in the objective function. That term is updated during the inversion by using the models obtained at the previous inversion stage. To account for lateral heterogeneity between sparse borehole locations, we use an image-guided smoothing algorithm. Numerical testing for structurally complex anisotropic media demonstrates that the facies-based constraints may ensure the convergence of the objective function towards the global minimum in the absence of ultra-low-frequency data and for simple (even 1D) initial models. We test the algorithm on clean data and on surface records contaminated by Gaussian noise. The algorithm also produces a high-resolution facies model, which should be instrumental in reservoir characterization.


2018 ◽  
Vol 37 (2) ◽  
pp. 142-145 ◽  
Author(s):  
Philipp Witte ◽  
Mathias Louboutin ◽  
Keegan Lensink ◽  
Michael Lange ◽  
Navjot Kukreja ◽  
...  

This tutorial is the third part of a full-waveform inversion (FWI) tutorial series with a step-by-step walkthrough of setting up forward and adjoint wave equations and building a basic FWI inversion framework. For discretizing and solving wave equations, we use Devito ( http://www.opesci.org/devito-public ), a Python-based domain-specific language for automated generation of finite-difference code ( Lange et al., 2016 ). The first two parts of this tutorial ( Louboutin et al., 2017 , 2018 ) demonstrated how to solve the acoustic wave equation for modeling seismic shot records and how to compute the gradient of the FWI objective function using the adjoint-state method. With these two key ingredients, we will now build an inversion framework that can be used to minimize the FWI least-squares objective function.


Sign in / Sign up

Export Citation Format

Share Document