scholarly journals Full-waveform inversion using a nonlinearly smoothed wavefield

Geophysics ◽  
2018 ◽  
Vol 83 (2) ◽  
pp. R117-R127 ◽  
Author(s):  
Yuanyuan Li ◽  
Yunseok Choi ◽  
Tariq Alkhalifah ◽  
Zhenchun Li ◽  
Kai Zhang

Conventional full-waveform inversion (FWI) based on the least-squares misfit function faces problems in converging to the global minimum when using gradient methods because of the cycle-skipping phenomena. An initial model producing data that are at most a half-cycle away from the observed data is needed for convergence to the global minimum. Low frequencies are helpful in updating low-wavenumber components of the velocity model to avoid cycle skipping. However, low enough frequencies are usually unavailable in field cases. The multiplication of wavefields of slightly different frequencies adds artificial low-frequency components in the data, which can be used for FWI to generate a convergent result and avoid cycle skipping. We generalize this process by multiplying the wavefield with itself and then applying a smoothing operator to the multiplied wavefield or its square to derive the nonlinearly smoothed wavefield, which is rich in low frequencies. The global correlation-norm-based objective function can mitigate the dependence on the amplitude information of the nonlinearly smoothed wavefield. Therefore, we have evaluated the use of this objective function when using the nonlinearly smoothed wavefield. The proposed objective function has much larger convexity than the conventional objective functions. We calculate the gradient of the objective function using the adjoint-state technique, which is similar to that of the conventional FWI except for the adjoint source. We progressively reduce the smoothing width applied to the nonlinear wavefield to naturally adopt the multiscale strategy. Using examples on the Marmousi 2 model, we determine that the proposed FWI helps to generate convergent results without the need for low-frequency information.

Geophysics ◽  
2018 ◽  
Vol 83 (2) ◽  
pp. R77-R88 ◽  
Author(s):  
Yunseok Choi ◽  
Tariq Alkhalifah

Full-waveform inversion (FWI) suffers from the cycle-skipping problem when the available frequency-band of data is not low enough. We have applied an exponential damping to the data to generate artificial low frequencies, which helps FWI to avoid cycle skipping. In this case, the least-squares misfit function does not properly deal with the exponentially damped wavefield in FWI because the amplitude of traces decays almost exponentially with increasing offset in a damped wavefield. Thus, we use a deconvolution-based objective function for FWI of the exponentially damped wavefield. The deconvolution filter includes inherently a normalization between the modeled and observed data; thus, it can address the unbalanced amplitude of a damped wavefield. We specifically normalize the modeled data with the observed data in the frequency-domain to estimate the deconvolution filter and selectively choose a frequency-band for normalization that mainly includes the artificial low frequencies. We calculate the gradient of the objective function using the adjoint-state method. The synthetic and benchmark data examples indicate that our FWI algorithm generates a convergent long-wavelength structure without low-frequency information in the recorded data.


Geophysics ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. R201-R211 ◽  
Author(s):  
Zedong Wu ◽  
Tariq Alkhalifah

Standard full-waveform inversion (FWI) attempts to minimize the difference between observed and modeled data. However, this difference is obviously sensitive to the amplitude of observed data, which leads to difficulties because we often do not process data in absolute units and because we usually do not consider density variations, elastic effects, or more complicated physical phenomena. Global correlation methods can remove the amplitude influence for each trace and thus can mitigate such difficulties in some sense. However, this approach still suffers from the well-known cycle-skipping problem, leading to a flat objective function when observed and modeled data are not correlated well enough. We optimize based on maximizing not only the zero-lag global correlation but also time or space lags of the modeled data to circumvent the half-cycle limit. We use a weighting function that is maximum value at zero lag and decays away from zero lag to balance the role of the lags. The resulting objective function is less sensitive to the choice of the maximum lag allowed and has a wider region of convergence compared with standard FWI. Furthermore, we develop a selective function, which passes to the gradient calculation only positive correlations, to mitigate cycle skipping. Finally, the resulting algorithm has better convergence behavior than conventional methods. Application to the Marmousi model indicates that this method converges starting with a linearly increasing velocity model, even with data free of frequencies less than 3.5 Hz. Application to the SEG2014 data set demonstrates the potential of our method.


Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. R553-R563
Author(s):  
Sagar Singh ◽  
Ilya Tsvankin ◽  
Ehsan Zabihi Naeini

The nonlinearity of full-waveform inversion (FWI) and parameter trade-offs can prevent convergence toward the actual model, especially for elastic anisotropic media. The problems with parameter updating become particularly severe if ultra-low-frequency seismic data are unavailable, and the initial model is not sufficiently accurate. We introduce a robust way to constrain the inversion workflow using borehole information obtained from well logs. These constraints are included in the form of rock-physics relationships for different geologic facies (e.g., shale, sand, salt, and limestone). We develop a multiscale FWI algorithm for transversely isotropic media with a vertical symmetry axis (VTI media) that incorporates facies information through a regularization term in the objective function. That term is updated during the inversion by using the models obtained at the previous inversion stage. To account for lateral heterogeneity between sparse borehole locations, we use an image-guided smoothing algorithm. Numerical testing for structurally complex anisotropic media demonstrates that the facies-based constraints may ensure the convergence of the objective function towards the global minimum in the absence of ultra-low-frequency data and for simple (even 1D) initial models. We test the algorithm on clean data and on surface records contaminated by Gaussian noise. The algorithm also produces a high-resolution facies model, which should be instrumental in reservoir characterization.


Geophysics ◽  
2016 ◽  
Vol 81 (6) ◽  
pp. R339-R348 ◽  
Author(s):  
Yunyue Elita Li ◽  
Laurent Demanet

The availability of low-frequency data is an important factor in the success of full-waveform inversion (FWI) in the acoustic regime. The low frequencies help determine the kinematically relevant, low-wavenumber components of the velocity model, which are in turn needed to avoid convergence of FWI to spurious local minima. However, acquiring data less than 2 or 3 Hz from the field is a challenging and expensive task. We have explored the possibility of synthesizing the low frequencies computationally from high-frequency data and used the resulting prediction of the missing data to seed the frequency sweep of FWI. As a signal-processing problem, bandwidth extension is a very nonlinear and delicate operation. In all but the simplest of scenarios, it can only be expected to lead to plausible recovery of the low frequencies, rather than their accurate reconstruction. Even so, it still requires a high-level interpretation of band-limited seismic records into individual events, each of which can be extrapolated to a lower (or higher) frequency band from the nondispersive nature of the wave-propagation model. We have used the phase-tracking method for the event separation task. The fidelity of the resulting extrapolation method is typically higher in phase than in amplitude. To demonstrate the reliability of bandwidth extension in the context of FWI, we first used the low frequencies in the extrapolated band as data substitute, to create the low-wavenumber background velocity model, and then we switched to recorded data in the available band for the rest of the iterations. The resulting method, extrapolated FWI, demonstrated surprising robustness to the inaccuracies in the extrapolated low-frequency data. With two synthetic examples calibrated so that regular FWI needs to be initialized at 1 Hz to avoid local minima, we have determined that FWI based on an extrapolated [1, 5] Hz band, itself generated from data available in the [5, 15] Hz band, can produce reasonable estimations of the low-wavenumber velocity models.


Geophysics ◽  
2014 ◽  
Vol 79 (2) ◽  
pp. R55-R61 ◽  
Author(s):  
Tariq Alkhalifah ◽  
Yunseok Choi

In full-waveform inversion (FWI), a gradient-based update of the velocity model requires an initial velocity that produces synthetic data that are within a half-cycle, everywhere, from the field data. Such initial velocity models are usually extracted from migration velocity analysis or traveltime tomography, among other means, and are not guaranteed to adhere to the FWI requirements for an initial velocity model. As such, we evaluated an objective function based on the misfit in the instantaneous traveltime between the observed and modeled data. This phase-based attribute of the wavefield, along with its phase unwrapping characteristics, provided a frequency-dependent traveltime function that was easy to use and quantify, especially compared to conventional phase representation. With a strong Laplace damping of the modeled, potentially low-frequency, data along the time axis, this attribute admitted a first-arrival traveltime that could be compared with picked ones from the observed data, such as in wave equation tomography (WET). As we relax the damping on the synthetic and observed data, the objective function measures the misfit in the phase, however unwrapped. It, thus, provided a single objective function for a natural transition from WET to FWI. A Marmousi example demonstrated the effectiveness of the approach.


Geophysics ◽  
2019 ◽  
Vol 84 (6) ◽  
pp. R897-R908 ◽  
Author(s):  
Zhen-dong Zhang ◽  
Tariq Alkhalifah

Full-waveform inversion (FWI) in its classic form is a method based on minimizing the [Formula: see text] norm of the difference between the observed and simulated seismic waveforms at the receiver locations. The objective is to find a subsurface model that reproduces the full waveform including the traveltimes and amplitudes of the observed seismic data. However, the widely used [Formula: see text]-norm-based FWI faces many issues in practice. The point-wise comparison of waveforms fails when the phase difference between the compared waveforms of the predicted and observed data is larger than a half-cycle. In addition, amplitude matching is impractical considering the simplified physics that we often use to describe the medium. To avoid these known problems, we have developed a novel elastic FWI algorithm using the local-similarity attribute. It compares two traces within a predefined local time extension; thus, is not limited by the half-cycle criterion. The algorithm strives to maximize the local similarities of the predicted and observed data by stretching/squeezing the observed data. Phases instead of amplitudes of the seismic data are used in the comparison. The algorithm compares two data sets locally; thus, it performs better than the global correlation in matching multiple arrivals. Instead of picking/calculating one stationary stretching/squeezing curve, we used a weighted integral to find all possible stationary curves. We also introduced a polynomial-type weighting function, which is determined only by the predefined maximum stretching/squeezing and is guaranteed to be smoothly varying within the extension range. Compared with the previously used Gaussian or linear weighting functions, our polynomial one has fewer parameters to play around with. A modified synthetic elastic Marmousi model and the North Sea field data are used to verify the effectiveness of the developed approach and also reveal some of its limitations.


Geophysics ◽  
2020 ◽  
Vol 85 (3) ◽  
pp. R275-R288 ◽  
Author(s):  
Hongyu Sun ◽  
Laurent Demanet

The lack of low-frequency information and a good initial model can seriously affect the success of full-waveform inversion (FWI), due to the inherent cycle skipping problem. Computational low-frequency extrapolation is in principle the most direct way to address this issue. By considering bandwidth extension as a regression problem in machine learning, we have adopted an architecture of convolutional neural network (CNN) to automatically extrapolate the missing low frequencies. The band-limited recordings are the inputs of the CNN, and, in our numerical experiments, a neural network trained from enough samples can predict a reasonable approximation to the seismograms in the unobserved low-frequency band, in phase and in amplitude. The numerical experiments considered are set up on simulated P-wave data. In extrapolated FWI (EFWI), the low-wavenumber components of the model are determined from the extrapolated low frequencies, before proceeding with a frequency sweep of the band-limited data. The introduced deep-learning method of low-frequency extrapolation shows adequate generalizability for the initialization step of EFWI. Numerical examples show that the neural network trained on several submodels of the Marmousi model is able to predict the low frequencies for the BP 2004 benchmark model. Additionally, the neural network can robustly process seismic data with uncertainties due to the existence of random noise, a poorly known source wavelet, and a different finite-difference scheme in the forward modeling operator. Finally, this approach is not subject to strong assumptions on signals or velocity models of other methods for bandwidth extension and seems to offer a tantalizing solution to the problem of properly initializing FWI.


Geophysics ◽  
2018 ◽  
Vol 83 (6) ◽  
pp. R649-R658 ◽  
Author(s):  
Yike Liu ◽  
Bin He ◽  
Huiyi Lu ◽  
Zhendong Zhang ◽  
Xiao-Bi Xie ◽  
...  

Many full-waveform inversion schemes are based on the iterative perturbation theory to fit the observed waveforms. When the observed waveforms lack low frequencies, those schemes may encounter convergence problems due to cycle skipping when the initial velocity model is far from the true model. To mitigate this difficulty, we have developed a new objective function that fits the seismic-waveform intensity, so the dependence of the starting model can be reduced. The waveform intensity is proportional to the square of its amplitude. Forming the intensity using the waveform is a nonlinear operation, which separates the original waveform spectrum into an ultra-low-frequency part and a higher frequency part, even for data that originally do not have low-frequency contents. Therefore, conducting multiscale inversions starting from ultra-low-frequency intensity data can largely avoid the cycle-skipping problem. We formulate the intensity objective function, the minimization process, and the gradient. Using numerical examples, we determine that the proposed method was very promising and could invert for the model using data lacking low-frequency information.


2017 ◽  
Vol 5 (3) ◽  
pp. SO1-SO10 ◽  
Author(s):  
Kai Lu ◽  
Jing Li ◽  
Bowen Guo ◽  
Lei Fu ◽  
Gerard Schuster

Full-waveform inversion of seismic data is often plagued by cycle-skipping problems such that an iterative optimization method often gets stuck in a local minimum. To avoid this problem, we simplify the objective function so that the iterative solution can quickly converge to a solution in the vicinity of the global minimum. The objective function is simplified by only using parsimonious and important portions of the data, which are defined as skeletonized data. We have developed a mostly nonmathematical tutorial that explains the theory of wave-equation inversion of skeletonized data. We also demonstrate its effectiveness with examples.


Sign in / Sign up

Export Citation Format

Share Document