IN OVO AND IN VITRO SUSCEPTIBILITY OF AMERICAN ALLIGATORS (ALLIGATOR MISSISSIPPIENSIS) TO AVIAN INFLUENZA VIRUS INFECTION

2015 ◽  
Vol 51 (1) ◽  
pp. 187-198 ◽  
Author(s):  
Bradley L. Temple ◽  
John W. Finger ◽  
Cheryl A. Jones ◽  
Jon D. Gabbard ◽  
Tomislav Jelesijevic ◽  
...  
Author(s):  
Keiichi Taniguchi ◽  
Yoshinori Ando ◽  
Masanori Kobayashi ◽  
Shinsuke Toba ◽  
Haruaki Nobori ◽  
...  

Human infections with the H5 highly pathogenic avian influenza virus (HPAIV) sporadically threatens public health. The susceptibility of HPAIVs to baloxavir acid (BXA), which is a new class of inhibitor for the influenza virus cap-dependent endonuclease, has been confirmed in vitro, but has not yet been characterized fully. Here, the efficacy of BXA against HPAIVs, including recent H5N8 variants in vitro was assessed. The antiviral efficacy of baloxavir marboxil (BXM) in H5N1 virus-infected mice was also investigated. BXA exhibited similar in vitro activities against H5N1, H5N6, and H5N8 variants tested to those of seasonal and other zoonotic strains. BXM monotherapy in mice infected with the H5N1 HPAIV clinical isolate; A/Hong Kong/483/1997 (H5N1) strain, also caused a significant reduction in viral titers in the lungs, brains, and kidneys, followed by prevention of acute lung inflammation and improvement of mortality compared with oseltamivir phosphate (OSP). Furthermore, combination treatments with BXM and OSP, using a 48-hour delayed treatment model showed a more potent effect on viral replication in organs, accompanied by improved survival compared to BXM or OSP monotherapy. From each test, no resistant virus (e.g., I38T in the PA) emerged in any BXM-treated mouse. These results therefore support the conclusion that BXM has potent antiviral efficacy against H5 HPAIV infections.


2019 ◽  
Vol 93 (10) ◽  
Author(s):  
Hui Zeng ◽  
Cynthia S. Goldsmith ◽  
Amrita Kumar ◽  
Jessica A. Belser ◽  
Xiangjie Sun ◽  
...  

ABSTRACTFerrets represent an invaluable animal model to study influenza virus pathogenesis and transmission. To further characterize this model, we developed a differentiated primary ferret nasal epithelial cell (FNEC) culture model for investigation of influenza A virus infection and virus-host interactions. This well-differentiated culture consists of various cell types, a mucociliary clearance system, and tight junctions, representing the nasal ciliated pseudostratified respiratory epithelium. Both α2,6-linked and α2,3-linked sialic acid (SA) receptors, which preferentially bind the hemagglutinin (HA) of human and avian influenza viruses, respectively, were detected on the apical surface of the culture with different cellular tropisms. In accordance with the distribution of SA receptors, we observed that a pre-2009 seasonal A(H1N1) virus infected both ciliated and nonciliated cells, whereas a highly pathogenic avian influenza (HPAI) A(H5N1) virus primarily infected nonciliated cells. Transmission electron microscopy revealed that virions were released from or associated with the apical membranes of ciliated, nonciliated, and mucin-secretory goblet cells. Upon infection, the HPAI A(H5N1) virus replicated to titers higher than those of the human A(H1N1) virus at 37°C; however, replication of the A(H5N1) virus was significantly attenuated at 33°C. Furthermore, we found that infection with the A(H5N1) virus induced higher expression levels of immune mediator genes and resulted in more cell damage/loss than with the human A(H1N1) virus. This primary differentiated FNEC culture model, recapitulating the structure of the nasal epithelium, provides a useful model to bridgein vivoandin vitrostudies of cellular tropism, infectivity, and pathogenesis of influenza viruses during the initial stages of infection.IMPORTANCEAlthough ferrets serve as an important model of influenza virus infection, much remains unknown about virus-host interactions in this species at the cellular level. The development of differentiated primary cultures of ferret nasal epithelial cells is an important step toward understanding cellular tropism and the mechanisms of influenza virus infection and replication in the airway milieu of this model. Using lectin staining and microscopy techniques, we characterized the sialic acid receptor distribution and the cellular composition of the culture model. We then evaluated the replication of and immune response to human and avian influenza viruses at relevant physiological temperatures. Our findings offer significant insight into this first line of defense against influenza virus infection and provide a model for the evaluation of emerging influenza viruses in a well-controlledin vitroenvironmental setting.


1999 ◽  
Vol 73 (3) ◽  
pp. 2094-2098 ◽  
Author(s):  
Shantha Kodihalli ◽  
Hideo Goto ◽  
Darwyn L. Kobasa ◽  
Scott Krauss ◽  
Yoshihiro Kawaoka ◽  
...  

ABSTRACT In Hong Kong in 1997, a highly lethal H5N1 avian influenza virus was apparently transmitted directly from chickens to humans with no intermediate mammalian host and caused 18 confirmed infections and six deaths. Strategies must be developed to deal with this virus if it should reappear, and prospective vaccines must be developed to anticipate a future pandemic. We have determined that unadapted H5N1 viruses are pathogenic in mice, which provides a well-defined mammalian system for immunological studies of lethal avian influenza virus infection. We report that a DNA vaccine encoding hemagglutinin from the index human influenza isolate A/HK/156/97 provides immunity against H5N1 infection of mice. This immunity was induced against both the homologous A/HK/156/97 (H5N1) virus, which has no glycosylation site at residue 154, and chicken isolate A/Ck/HK/258/97 (H5N1), which does have a glycosylation site at residue 154. The mouse model system should allow rapid evaluation of the vaccine’s protective efficacy in a mammalian host. In our previous study using an avian model, DNA encoding hemagglutinin conferred protection against challenge with antigenic variants that differed from the primary antigen by 11 to 13% in the HA1 region. However, in our current study we found that a DNA vaccine encoding the hemagglutinin from A/Ty/Ir/1/83 (H5N8), which differs from A/HK/156/97 (H5N1) by 12% in HA1, prevented death but not H5N1 infection in mice. Therefore, a DNA vaccine made with a heterologous H5 strain did not prevent infection by H5N1 avian influenza viruses in mice but was useful in preventing death.


Sign in / Sign up

Export Citation Format

Share Document