scholarly journals A survey of tabanid flies in Okushiri Island, Hokkaido, Japan

1985 ◽  
Vol 36 (3) ◽  
pp. 261-263
Author(s):  
Tohru INAOKA ◽  
Hirofumi HAYAKAWA ◽  
Katsuyuki YAMAGUCHI
Keyword(s):  
Author(s):  
T. Tsukamoto ◽  
H. Mikami ◽  
K. Haga ◽  
K. Terazawa
Keyword(s):  

2006 ◽  
Vol 45 (1) ◽  
pp. 1-23 ◽  
Author(s):  
Hirofumi Matsumura ◽  
Mark J. Hudson ◽  
Kenichiro Koshida ◽  
Yoichi Minakawa

1988 ◽  
Vol 39 (1) ◽  
pp. 81-83
Author(s):  
Hitoshi SASAKI ◽  
Yutaka NISHIJIMA ◽  
Hirofumi HAYAKAWA ◽  
Yoshihisa KUSUI
Keyword(s):  

2010 ◽  
Vol 04 (02) ◽  
pp. 83-93 ◽  
Author(s):  
SHIRO TAKADA ◽  
YASUKO KUWATA ◽  
ARUN PINTA

The Indian Ocean earthquake and tsunami occurred in December 2004 caused destructive damage to Phang Nga Province, Thailand. We carried out two times of interview surveys about 1 and 3 years after the event to administrative bodies and lifeline companies for getting the information on lifeline damage, restoration and reconstruction situation, and summarized the basic concept of reconstruction plan of tsunami suffered towns considering lifeline restoration. On the other hand, as for the comparison of reconstruction problems, the lifelines recovery is reviewed at Aonae district in Okushiri Island after the 1993 Hokkaido-Nansei-oki earthquake. As the result, the difference of the process of reconstruction of town and lifelines has been revealed and the importance of preparing of the reconstruction plan before the event under the consideration of a long-term city planning is pointed out.


1928 ◽  
Vol 4 (3) ◽  
pp. 298-309 ◽  
Author(s):  
A. Watanabe

2021 ◽  
Author(s):  
Atsushi Urabe ◽  
Yoshihiro Kase ◽  
Gentaro Kawakami ◽  
Kenji Nishina ◽  
Yasuhiro Takashimizu ◽  
...  

Abstract The eastern margin of the Japan Sea is located along an active convergent boundary between the North American and Eurasian tectonic plates. Okushiri Island, which is situated off the southwest coast of Hokkaido, is located in an active tectonic zone where many active submarine faults are distributed. Studying the records of past tsunamis on Okushiri Island is important for reconstructing the history and frequency of fault activity in this region, as well as the history of tsunamis in the northern part of the eastern margin of the Japan Sea. Five tsunami deposit horizons have been identified previously on Okushiri Island, including that of the 1741 tsunami, which are interbedded in the coastal lowlands and Holocene terraces. However, these known tsunami deposits date back only ~3,000 years. A much longer record of tsunami occurrence is required to consider the frequency of submarine fault activity. In this study, we cored from 7 to 25 m depth in the Wasabiyachi lowland on the southern part of Okushiri Island, where previous studies have confirmed the presence of multiple tsunami deposits on peat layer surfaces. The results indicate that the Wasabiyachi lowland comprises an area that was obstructed by coastal barriers between the lowland and the coast at ~8.5 ka and consists of muddy sediment and peat layers formed in lagoons and floodplains, respectively. In addition, event deposits and 15 tsunami horizons were observed among the turbidites and peat layers, dating back as far as 3,000 years. Combined with previous findings, Okushiri Island has sustained 20 tsunami events between ~7.5 ka and the present. These findings are critical for investigating the activities of submarine faults off the southwestern coast of Hokkaido, as well as for determining tsunami risks along the coast of the Japan Sea between North Tohoku and Hokkaido.


Geosciences ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 253 ◽  
Author(s):  
Yuji Enomoto ◽  
Tsuneaki Yamabe ◽  
Shigeki Sugiura ◽  
Hitoshi Kondo

In this paper, we investigate the mysterious tsunami fires that occurred at Aonae Harbor on Okushiri Island during the 1993 Hokkaido Nansei-Oki earthquake. Specifically, five fishing boats moored separately from each other in the harbor suddenly caught fire and burned nearly simultaneously with the arrival of the first tsunami wave. However, the ignition mechanism of those fires has, until now, remained largely unknown. At the time the earthquake occurred, an NHK (Japan Broadcasting Corporation, Tokyo, Japan) crew that was on the island to report on its scenic natural attractions just happened to capture video footage of those tsunami-related fires. Using that NHK video footage in combination with eyewitness accounts, this study investigates the spatio-temporal process leading to those tsunami-related fires. For example, one witness said, "There was whitish bubbling in the offshore area and I saw five burning fishing boats moored on the seawall being blown about by the strong winds. The burning boats were swept ashore with the tsunami and ignited the gasoline of a car that was rolling in the waves. The fire eventually spread to the center of the Aonae District." The NHK video footage confirmed flames arising from the five fishing boats almost simultaneously and the shimmering white color of the tsunami waters striking the seawall, which were consistent with the eyewitness testimony. Based on these spatio-temporal data, we propose the following hypothetical model for the origin of tsunami fires. Combustible methane gas released from the seabed by the earthquake rose toward the surface, where it became diffused into the seawater and took the form of whitish bubbles. The tsunami strike on the Aonae Harbor seawall resulted in the generation of large electrical potential differences within the seawater mist, which quickly developed sufficient electrical energy to ignite the methane electrostatically. The burning methane bubbles accumulated on the boat decks, which then burned violently.


Sign in / Sign up

Export Citation Format

Share Document