marine terraces
Recently Published Documents


TOTAL DOCUMENTS

399
(FIVE YEARS 100)

H-INDEX

39
(FIVE YEARS 3)

2022 ◽  
Vol 10 (1) ◽  
pp. 99
Author(s):  
Efthimios Karymbalis ◽  
Konstantinos Tsanakas ◽  
Ioannis Tsodoulos ◽  
Kalliopi Gaki-Papanastassiou ◽  
Dimitrios Papanastassiou ◽  
...  

Marine terraces are geomorphic markers largely used to estimate past sea-level positions and surface deformation rates in studies focused on climate and tectonic processes worldwide. This paper aims to investigate the role of tectonic processes in the late Quaternary evolution of the coastal landscape of the broader Neapolis area by assessing long-term vertical deformation rates. To document and estimate coastal uplift, marine terraces are used in conjunction with Optically Stimulated Luminescence (OSL) dating and correlation to late Quaternary eustatic sea-level variations. The study area is located in SE Peloponnese in a tectonically active region. Geodynamic processes in the area are related to the active subduction of the African lithosphere beneath the Eurasian plate. A series of 10 well preserved uplifted marine terraces with inner edges ranging in elevation from 8 ± 2 m to 192 ± 2 m above m.s.l. have been documented, indicating a significant coastal uplift of the study area. Marine terraces have been identified and mapped using topographic maps (at a scale of 1:5000), aerial photographs, and a 2 m resolution Digital Elevation Model (DEM), supported by extensive field observations. OSL dating of selected samples from two of the terraces allowed us to correlate them with late Pleistocene Marine Isotope Stage (MIS) sea-level highstands and to estimate the long-term uplift rate. Based on the findings of the above approach, a long-term uplift rate of 0.36 ± 0.11 mm a−1 over the last 401 ± 10 ka has been suggested for the study area. The spatially uniform uplift of the broader Neapolis area is driven by the active subduction of the African lithosphere beneath the Eurasian plate since the study area is situated very close (~90 km) to the active margin of the Hellenic subduction zone.


Author(s):  
Beau Whitney ◽  
James Hengesh ◽  
Dan Clark

Sandstrom et al. (2020) present new elevation and age data for a flight of four marine terraces preserved along the western limb of the Cape Range anticline in western Australia. Their interpretation of these data provides an alternative estimate for the amount of tectonic deformation that has occurred since terrace formation. They conclude that less tectonic uplift has occurred in the region than previously reported and posit that their study provides a template for reducing the uncertainty associated with last interglacial paleoshoreline reconstructions.


2021 ◽  
Author(s):  
◽  
Dee Ninis

<p>At the southern Hikurangi margin, the subduction interface between the Australian and Pacific plates, beneath the southern North Island of New Zealand, is ‘locked’. It has previously been estimated that sudden slip on this locked portion of the interface could result in a subduction zone or ‘megathrust’ earthquake of Mw 8.0-8.5 or larger. Historically, however, no significant (>Mw 7.2) subduction interface earthquake has occurred at the southern Hikurangi margin, and the hazard from subduction earthquakes to this region, which includes New Zealand’s capital city of Wellington, remains largely unknown.  Patterns of uplift at active margins can provide insight into subduction processes, including megathrust earthquakes. With the objectives to i) contribute to the understanding of partitioning of margin-parallel plate motion on to upper plate faults, and ii) provide insight into the relationship of permanent vertical deformation to subduction processes at the southern end of the Hikurangi margin, I investigate flights of late Pleistocene fluvial and marine terraces preserved across the lower North Island. Such geomorphic features, when constrained by numerical dating, provide a valuable set of data with which to quantify tectonic deformation - be they locally offset by a fault, or collectively uplifted across the margin.  Fault-offset fluvial terraces along the Hutt River, near Wellington, record dextral slip for the southern part of the Wellington Fault. From re-evaluated fault displacement measurements and new Optically Stimulated Luminescence (OSL) data, I estimate an average slip rate of 6.3 ± 1.9/1.2 mm/yr (2σ) during the last ~100 ka. However, slip on the Wellington Fault has not been steady throughout this time. During the Holocene, there was a phase of heightened ground rupture activity between ~8 and 10 ka, a period of relative quiescence between ~4.5 and 8 ka, and another period of heightened activity during the last ≤ 4.5 ka. Moreover, these results agree with independent paleoseismological evidence from other sites along the Wellington Fault for the timing of ground rupture events. The time-varying activity observed on the Wellington Fault may be regulated by stress interactions with other nearby upper plate active faults.  Net tectonic uplift of the southern Hikurangi margin is recorded by ancient emergent shore platforms preserved along the south coast of the North Island. I provide a new evaluation of the distribution and age of the Pleistocene marine terraces. Shore platform altitudes are accurately surveyed for the first time using Global Navigational Satellite Systems (GNSS). From these data I have determine the shore platform attitudes where they are preserved along the coast. The terraces are also dated, most for the first time, using OSL techniques. The most extensive Pleistocene terraces formed during Marine Isotope Stages (MIS) 5a, 5c, 5e and 7a. Because the ancient shorelines are now obscured by coverbed deposits, I use shore platform attitudes to reconstruct strandline elevations. These strandline elevations, corrected for sea level during their formative highstands, have been used to quantify rates of uplift across the southern Hikurangi margin.  In the forearc region of the Hikurangi margin, within ~70 km of the trough, uplift observed on the marine terraces along the Palliser Bay coast monotonically decreases away from the trough. The highest uplift rate of 1.7 ± 0.1 mm/yr is observed at the easternmost preserved terrace, near Cape Palliser, about 40 km from Hikurangi Trough. Further to the west, at Lake Ferry, uplift is 0.8 ± 0.1 mm/yr. The lowest rate of uplift, 0.2 ± 0.1 mm/yr, is observed at Wharekauhau, the westernmost marine terrace preserved on the Palliser Bay coast. Overall, the terraces are tilted towards the west, away from the trough, with older terraces exhibiting the most tilting. This long-wavelength pattern of uplift suggests that, in this forearc region of the margin, deep-seated processes, most likely subduction of a buoyant slab in combination with megathrust earthquakes, are the main contributors to permanent vertical deformation.  West of Palliser Bay, at a distance of >70 km from the Hikurangi Trough, vertical offsets on the marine terraces are evident across upper plate faults, most notably the Wairarapa and Ohariu Faults. The uplift rate at Baring Head, west and on the upthrown side of the Wairarapa Fault, is as much as 1.6 ± 0.1 mm/yr. At Tongue Point, where the Ohariu Fault offsets the marine terraces preserved there, uplift calculated from the western, upthrown side of the fault is 0.6 ± 0.1 mm/yr. These uplift rates suggest that, in the Axial Ranges, in addition to sediment underplating, movement on the major active upper plate faults also contributes to rock uplift.</p>


2021 ◽  
Author(s):  
◽  
Dee Ninis

<p>At the southern Hikurangi margin, the subduction interface between the Australian and Pacific plates, beneath the southern North Island of New Zealand, is ‘locked’. It has previously been estimated that sudden slip on this locked portion of the interface could result in a subduction zone or ‘megathrust’ earthquake of Mw 8.0-8.5 or larger. Historically, however, no significant (>Mw 7.2) subduction interface earthquake has occurred at the southern Hikurangi margin, and the hazard from subduction earthquakes to this region, which includes New Zealand’s capital city of Wellington, remains largely unknown.  Patterns of uplift at active margins can provide insight into subduction processes, including megathrust earthquakes. With the objectives to i) contribute to the understanding of partitioning of margin-parallel plate motion on to upper plate faults, and ii) provide insight into the relationship of permanent vertical deformation to subduction processes at the southern end of the Hikurangi margin, I investigate flights of late Pleistocene fluvial and marine terraces preserved across the lower North Island. Such geomorphic features, when constrained by numerical dating, provide a valuable set of data with which to quantify tectonic deformation - be they locally offset by a fault, or collectively uplifted across the margin.  Fault-offset fluvial terraces along the Hutt River, near Wellington, record dextral slip for the southern part of the Wellington Fault. From re-evaluated fault displacement measurements and new Optically Stimulated Luminescence (OSL) data, I estimate an average slip rate of 6.3 ± 1.9/1.2 mm/yr (2σ) during the last ~100 ka. However, slip on the Wellington Fault has not been steady throughout this time. During the Holocene, there was a phase of heightened ground rupture activity between ~8 and 10 ka, a period of relative quiescence between ~4.5 and 8 ka, and another period of heightened activity during the last ≤ 4.5 ka. Moreover, these results agree with independent paleoseismological evidence from other sites along the Wellington Fault for the timing of ground rupture events. The time-varying activity observed on the Wellington Fault may be regulated by stress interactions with other nearby upper plate active faults.  Net tectonic uplift of the southern Hikurangi margin is recorded by ancient emergent shore platforms preserved along the south coast of the North Island. I provide a new evaluation of the distribution and age of the Pleistocene marine terraces. Shore platform altitudes are accurately surveyed for the first time using Global Navigational Satellite Systems (GNSS). From these data I have determine the shore platform attitudes where they are preserved along the coast. The terraces are also dated, most for the first time, using OSL techniques. The most extensive Pleistocene terraces formed during Marine Isotope Stages (MIS) 5a, 5c, 5e and 7a. Because the ancient shorelines are now obscured by coverbed deposits, I use shore platform attitudes to reconstruct strandline elevations. These strandline elevations, corrected for sea level during their formative highstands, have been used to quantify rates of uplift across the southern Hikurangi margin.  In the forearc region of the Hikurangi margin, within ~70 km of the trough, uplift observed on the marine terraces along the Palliser Bay coast monotonically decreases away from the trough. The highest uplift rate of 1.7 ± 0.1 mm/yr is observed at the easternmost preserved terrace, near Cape Palliser, about 40 km from Hikurangi Trough. Further to the west, at Lake Ferry, uplift is 0.8 ± 0.1 mm/yr. The lowest rate of uplift, 0.2 ± 0.1 mm/yr, is observed at Wharekauhau, the westernmost marine terrace preserved on the Palliser Bay coast. Overall, the terraces are tilted towards the west, away from the trough, with older terraces exhibiting the most tilting. This long-wavelength pattern of uplift suggests that, in this forearc region of the margin, deep-seated processes, most likely subduction of a buoyant slab in combination with megathrust earthquakes, are the main contributors to permanent vertical deformation.  West of Palliser Bay, at a distance of >70 km from the Hikurangi Trough, vertical offsets on the marine terraces are evident across upper plate faults, most notably the Wairarapa and Ohariu Faults. The uplift rate at Baring Head, west and on the upthrown side of the Wairarapa Fault, is as much as 1.6 ± 0.1 mm/yr. At Tongue Point, where the Ohariu Fault offsets the marine terraces preserved there, uplift calculated from the western, upthrown side of the fault is 0.6 ± 0.1 mm/yr. These uplift rates suggest that, in the Axial Ranges, in addition to sediment underplating, movement on the major active upper plate faults also contributes to rock uplift.</p>


2021 ◽  
Vol 72 ◽  
pp. 151-163
Author(s):  
Gandi Y.S. Purba ◽  
◽  
Lukas Rumenta ◽  
Purwanto Purwanto ◽  
Leontine E. Becking ◽  
...  

Marine lake in a karst landscape is one of the macro karst forms known as doline and is only found in some locations in the world. Moreover, the theory of marine doline formation is always associated with global sea-level rise which differs from one place to another due to several factors. This research was conducted to understand the formation process of marine lakes in Misool and how the water fills the basins formed especially at Holocene time. This was achieved by obtaining information on the longest underwater terrace which is also the longest standing water position recorded on the sea wall. The marine terraces were measured by sounding profiles to the sea bordering the seven marine lakes including Lenmakana, Balbullol, Lenkafal, Keramat, Karawapop, Keramat-2, and Keramat-3 as well as Harapan Jaya Sea. A total of 24 profiles were measured and stable isotopes δ18O and δD of water samples were used to determine the origin of water in the lakes. The results showed the longest terrace was at the depth of ˗33 and ˗3 m while the references from the area closest to Misool showed the same water level positions at 10,500 BP and 6,985 BP. Furthermore, the composition of δ18O and δD from lake water indicated the water samples were a mixture of groundwater and seawater with the seawater having the more dominant concentration and this allows it to fill the lake first through a previously formed cavity system.


2021 ◽  
Vol 272 ◽  
pp. 107217
Author(s):  
Junki Komori ◽  
Masanobu Shishikura ◽  
Ryosuke Ando ◽  
Yusuke Yokoyama ◽  
Yosuke Miyairi

2021 ◽  
pp. 106692
Author(s):  
Dominik Brill ◽  
Lucas Ageby ◽  
Christina Obert ◽  
Rolf Hollerbach ◽  
Mathieu Duval ◽  
...  

2021 ◽  
Vol 13 (10) ◽  
pp. 4819-4845
Author(s):  
Karla Rubio-Sandoval ◽  
Alessio Rovere ◽  
Ciro Cerrone ◽  
Paolo Stocchi ◽  
Thomas Lorscheid ◽  
...  

Abstract. We use a standardized template for Pleistocene sea-level data to review last interglacial (Marine Isotope Stage 5 – MIS 5) sea-level indicators along the coasts of the western Atlantic and southwestern Caribbean, on a transect spanning from Brazil to Honduras and including the islands of Aruba, Bonaire, and Curaçao. We identified six main types of sea-level indicators (beach deposits, coral reef terraces, lagoonal deposits, marine terraces, Ophiomorpha burrows, and tidal notches) and produced 55 standardized data points, each constrained by one or more geochronological methods. Sea-level indicators are well preserved along the Brazilian coasts, providing an almost continuous north-to-south transect. However, this continuity disappears north of the Rio Grande do Norte Brazilian state. According to the sea-level index points (discrete past position of relative sea level in space and time) the paleo sea-level values range from ∼ 5.6 to 20 m above sea level (a.s.l.) in the continental sector and from ∼ 2 to 10 m a.s.l. in the Caribbean islands. In this paper, we address the uncertainties surrounding these values. From our review, we identify that the coasts of northern Brazil, French Guiana, Suriname, Guyana, and Venezuela would benefit from a renewed study of Pleistocene sea-level indicators, as it was not possible to identify sea-level index points for the last interglacial coastal outcrops of these countries. Future research must also be directed at improving the chronological control at several locations, and several sites would benefit from the re-measurement of sea-level index points using more accurate elevation measurement techniques. The database compiled in this study is available in spreadsheet format at the following link: https://doi.org/10.5281/zenodo.5516444 (Version 1.02; Rubio-Sandoval et al., 2021).


Sign in / Sign up

Export Citation Format

Share Document