scholarly journals Sign Language Translation Approach to Sinhalese Language

2016 ◽  
Vol 5 (1) ◽  
Author(s):  
Pumudu Fernando ◽  
Prasad Wimalaratne
Author(s):  
Marion Kaczmarek ◽  
Michael Filhol

AbstractProfessional Sign Language translators, unlike their text-to-text counterparts, are not equipped with computer-assisted translation (CAT) software. Those softwares are meant to ease the translators’ tasks. No prior study as been conducted on this topic, and we aim at specifying such a software. To do so, we based our study on the professional Sign Language translators’ practices and needs. The aim of this paper is to identify the necessary steps in the text-to-sign translation process. By filming and interviewing professionals for both objective and subjective data, we build a list of tasks and see if they are systematic and performed in a definite order. Finally, we reflect on how CAT tools could assist those tasks, how to adapt the existing tools to Sign Language and what is necessary to add in order to fit the needs of Sign Language translation. In the long term, we plan to develop a first prototype of CAT software for sign languages.


Author(s):  
Anjali Kanvinde ◽  
Abhishek Revadekar ◽  
Mahesh Tamse ◽  
Dhananjay R. Kalbande ◽  
Nida Bakereywala

Author(s):  
HyeonJung Park ◽  
Youngki Lee ◽  
JeongGil Ko

In this work we present SUGO, a depth video-based system for translating sign language to text using a smartphone's front camera. While exploiting depth-only videos offer benefits such as being less privacy-invasive compared to using RGB videos, it introduces new challenges which include dealing with low video resolutions and the sensors' sensitiveness towards user motion. We overcome these challenges by diversifying our sign language video dataset to be robust to various usage scenarios via data augmentation and design a set of schemes to emphasize human gestures from the input images for effective sign detection. The inference engine of SUGO is based on a 3-dimensional convolutional neural network (3DCNN) to classify a sequence of video frames as a pre-trained word. Furthermore, the overall operations are designed to be light-weight so that sign language translation takes place in real-time using only the resources available on a smartphone, with no help from cloud servers nor external sensing components. Specifically, to train and test SUGO, we collect sign language data from 20 individuals for 50 Korean Sign Language words, summing up to a dataset of ~5,000 sign gestures and collect additional in-the-wild data to evaluate the performance of SUGO in real-world usage scenarios with different lighting conditions and daily activities. Comprehensively, our extensive evaluations show that SUGO can properly classify sign words with an accuracy of up to 91% and also suggest that the system is suitable (in terms of resource usage, latency, and environmental robustness) to enable a fully mobile solution for sign language translation.


Author(s):  
Necati Cihan Camgoz ◽  
Simon Hadfield ◽  
Oscar Koller ◽  
Hermann Ney ◽  
Richard Bowden

2019 ◽  
Vol 9 (13) ◽  
pp. 2683 ◽  
Author(s):  
Sang-Ki Ko ◽  
Chang Jo Kim ◽  
Hyedong Jung ◽  
Choongsang Cho

We propose a sign language translation system based on human keypoint estimation. It is well-known that many problems in the field of computer vision require a massive dataset to train deep neural network models. The situation is even worse when it comes to the sign language translation problem as it is far more difficult to collect high-quality training data. In this paper, we introduce the KETI (Korea Electronics Technology Institute) sign language dataset, which consists of 14,672 videos of high resolution and quality. Considering the fact that each country has a different and unique sign language, the KETI sign language dataset can be the starting point for further research on the Korean sign language translation. Using the KETI sign language dataset, we develop a neural network model for translating sign videos into natural language sentences by utilizing the human keypoints extracted from the face, hands, and body parts. The obtained human keypoint vector is normalized by the mean and standard deviation of the keypoints and used as input to our translation model based on the sequence-to-sequence architecture. As a result, we show that our approach is robust even when the size of the training data is not sufficient. Our translation model achieved 93.28% (55.28%, respectively) translation accuracy on the validation set (test set, respectively) for 105 sentences that can be used in emergency situations. We compared several types of our neural sign translation models based on different attention mechanisms in terms of classical metrics for measuring the translation performance.


Sign in / Sign up

Export Citation Format

Share Document