MULTI-OBJECTIVE OPTIMIZATION UNDER UNCERTAINTY WITH REAL-TIME INTEGRATED DECISION MAKING APPLIED TO STRUCTURAL ENGINEERING

Author(s):  
Mariapia Marchi ◽  
Mauro Munerato ◽  
Luca Rizzian ◽  
Stefano Costanzo
Author(s):  
Shreyanshu Parhi ◽  
S. C. Srivastava

Optimized and efficient decision-making systems is the burning topic of research in modern manufacturing industry. The aforesaid statement is validated by the fact that the limitations of traditional decision-making system compresses the length and breadth of multi-objective decision-system application in FMS.  The bright area of FMS with more complexity in control and reduced simpler configuration plays a vital role in decision-making domain. The decision-making process consists of various activities such as collection of data from shop floor; appealing the decision-making activity; evaluation of alternatives and finally execution of best decisions. While studying and identifying a suitable decision-making approach the key critical factors such as decision automation levels, routing flexibility levels and control strategies are also considered. This paper investigates the cordial relation between the system ideality and process response time with various prospective of decision-making approaches responsible for shop-floor control of FMS. These cases are implemented to a real-time FMS problem and it is solved using ARENA simulation tool. ARENA is a simulation software that is used to calculate the industrial problems by creating a virtual shop floor environment. This proposed topology is being validated in real time solution of FMS problems with and without implementation of decision system in ARENA simulation tool. The real-time FMS problem is considered under the case of full routing flexibility. Finally, the comparative analysis of the results is done graphically and conclusion is drawn.


Author(s):  
Cristina Johansson ◽  
Johan Ölvander ◽  
Micael Derelöv

In early design phases, it is vital to be able to screen the design space for a set of promising design alternatives for further study. This article presents a method able to balance several objectives of different mathematical natures, with high impact on the design choices. The method (MOSART) handles multi-objective optimization for safety and reliability trade-offs. The article focuses on optimization problem approach and processing of results as a base for decision-making. The output of the optimization step is the selection of specific system elements obtaining the best balance between the targets. However, what is a good base for decision can easily transform into too much information and overloading of the decision-maker. To solve this potential issue, from a set of Pareto optimal solutions, a smaller sub-set of selected solutions are visualized and filtered out using preference levels of the objectives, yielding a solid base for decision-making and valuable information on potential solutions. Trends were observed regarding each system element and discussed while processing the results of the analysis, supporting the decision of one final best solution.


Sign in / Sign up

Export Citation Format

Share Document