scholarly journals Influence of the common mode impedance paths on the design of the EMI filters used with SiC-buck converter

2015 ◽  
Vol 4 (2) ◽  
pp. 44
Author(s):  
J.-L. Kotny ◽  
T. Duquesne ◽  
N. Idir

This paper deals the design of EMI filter associated with buck converter using fast semiconductors silicon carbide SiC (diode and transistor JFET). To comply with EMC standards, a filter design method based on an equivalent electrical circuit is proposed. The aim is to identify the different values of the EMI filter elements but also to obtain the limits values of the parasitic elements of the passive components which have a major influence on the attenuation of the filters. The purpose is to study the influence of the modification of the common mode propagation paths before and after the installation of the filter. A solution is also proposed to reduce the conducted disturbances that occur at high frequency caused by the fast SiC components.The comparison of the simulation results with the measurements data carried out on a DC-DC converter without and with the EMI filter, shows the effectiveness of the proposed design approach.

Author(s):  
Hong Li ◽  
Yuhang Ding ◽  
Chongmo Zhang ◽  
Zhichang Yang ◽  
Zhichao Yang ◽  
...  

Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 413 ◽  
Author(s):  
Haoqi Zhu ◽  
Dongliang Liu ◽  
Xu Zhang ◽  
Feng Qu

The switching device in a power converter can produce very serious electromagnetic interference (EMI). In order to solve this problem and the associated reliability and stability issues, this article aimed to analyze and model the boost power factor correction (PFC) converter according to the EMI conduction path. The sources of common-mode (CM) and differential-mode (DM) noise of the boost PFC converter were analyzed, and the DM and CM equivalent circuits were deduced. Furthermore, high-frequency modeling of the common-mode inductor was developed using a precise model, and the EMI filter was designed. According to the Class B standard for EMI testing, it is better to restrain the EMI noise in the frequency range (150 kHz to 30 MHz) of the EMI conducted disturbance test. Using this method, a 2.4-kW PFC motor driving supply was designed, and the experimental results validate the analysis.


2021 ◽  
Author(s):  
Jianrui Liu ◽  
Dong Jiang ◽  
Wei Sun ◽  
Yechi Zhang ◽  
Jianan Chen

Sign in / Sign up

Export Citation Format

Share Document