scholarly journals Clonal versus non-clonal milkweeds (Asclepias spp.) respond differently to stem damage, affecting oviposition by monarch butterflies

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10296
Author(s):  
Elise He ◽  
Anurag A. Agrawal

Background Oviposition decisions are critical to the fitness of herbivorous insects and are often impacted by the availability and condition of host plants. Monarch butterflies (Danaus plexippus) rely on milkweeds (Asclepias spp.) for egg-laying and as food for larvae. Previous work has shown that monarchs prefer to oviposit on recently regrown plant tissues (after removal of above-ground biomass) while larvae grow poorly on plants previously damaged by insects. We hypothesized that these effects may depend on the life-history strategy of plants, as clonal and non-clonal milkweed species differ in resource allocation and defense strategies. Methodology/Principal Findings We first confirmed butterfly preference for regrown tissue in a field survey of paired mowed and unmowed plots of the common milkweed A. syriaca. We then experimentally studied the effects of plant damage (comparing undamaged controls to plants clipped and regrown, or damaged by insects) on oviposition choice, larval performance, and leaf quality of two closely related clonal and non-clonal species pairs: (1) A. syriaca and A. tuberosa, and (2) A. verticillata and A. incarnata. Clonal and non-clonal species displayed different responses to plant damage, impacting the proportions of eggs laid on plants. Clonal species had similar mean proportions of eggs on regrown and control plants (≈35–40% each), but fewer on insect-damaged plants (≈20%). Meanwhile non-clonal species had similar oviposition on insect-damaged and control plants (20–30% each) but more eggs on regrown plants (40–60%). Trait analyses showed reduced defenses in regrown plants and we found some evidence, although variable, for negative effects of insect damage on subsequent larval performance. Conclusions/Significance Overall, non-clonal species are more susceptible and preferred by monarch butterflies following clipping, while clonal species show tolerance to clipping and induced defense to insect herbivory. These results have implications for monarch conservation strategies that involve milkweed habitat management by mowing. More generally, plant life-history may mediate growth and defense strategies, explaining species-level variation in responses to different types of damage.

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Hayao Ohno ◽  
Morikatsu Yoshida ◽  
Takahiro Sato ◽  
Johji Kato ◽  
Mikiya Miyazato ◽  
...  

Peptide signaling controls many processes involving coordinated actions of multiple organs, such as hormone-mediated appetite regulation. However, the extent to which the mode of action of peptide signaling is conserved in different animals is largely unknown, because many peptides and receptors remain orphan and many undiscovered peptides still exist. Here, we identify two novel Caenorhabditis elegans neuropeptides, LURY-1-1 and LURY-1-2, as endogenous ligands for the neuropeptide receptor-22 (NPR-22). Both peptides derive from the same precursor that is orthologous to invertebrate luqin/arginine-tyrosine-NH2 (RYamide) proneuropeptides. LURY-1 peptides are secreted from two classes of pharyngeal neurons and control food-related processes: feeding, lifespan, egg-laying, and locomotory behavior. We propose that LURY-1 peptides transmit food signals to NPR-22 expressed in feeding pacemaker neurons and a serotonergic neuron. Our results identified a critical role for luqin-like RYamides in feeding-related processes and suggested that peptide-mediated negative feedback is important for satiety regulation in C. elegans.


EDIS ◽  
2006 ◽  
Vol 2006 (20) ◽  
Author(s):  
Jamba Gyeltshen ◽  
Amanda Hodges

EENY-373, a 5-page illustrated fact sheet by Jamba Gyeltshen and Amanda Hodges, describes this pest of ornamental trees and shrubs. Part of the Featured Creatures series, this publication covers the distribution, description, life history, host plant, damage, management, and selected references. Published by the UF Department of Entomology and Nematology, May 2006. EENY-373/IN677: Azalea Lace Bug, Stephanitis pyrioides (Scott) (Insecta: Hemiptera: Tingidae) (ufl.edu)


2018 ◽  
Vol 44 (11) ◽  
pp. 1040-1044 ◽  
Author(s):  
Wen-Hao Tan ◽  
Leiling Tao ◽  
Kevin M. Hoang ◽  
Mark D. Hunter ◽  
Jacobus C. de Roode

2020 ◽  
Vol 223 (23) ◽  
pp. jeb237255
Author(s):  
Lelei Wen ◽  
Xiaoguo Jiao ◽  
Fengxiang Liu ◽  
Shichang Zhang ◽  
Daiqin Li

ABSTRACTPrey proteins and lipids greatly impact predator life-history traits. However, life-history plasticity offers predators the opportunity to tune the life-history traits in response to the limited macronutrients to allocate among traits. A fast-growing predator species with a strict maturation time may be more likely to consume nutritionally imbalanced prey. Here, we tested this hypothesis by examining the effect of the protein-to-lipid ratio in prey on a small sheet web-building spider, Hylyphantes graminicola, with a short life span, using adult Drosophila melanogaster as the prey. By manipulating the macronutrient content of the prey to generate three prey types with different protein-to-lipid ratios (i.e. high, intermediate and low), we demonstrated that the majority of the spiders that consumed only these flies could reach full maturity. However, juvenile spiders that consumed high-lipid (low protein-to-lipid ratio) flies had a higher rate of mortality than those consuming medium-protein and high-protein flies. The prey protein-to-lipid ratio had no significant effects on the developmental duration and size at maturity. Although the prey protein-to-lipid ratio had no significant influence on mating behaviour and female fecundity, females reared on high-lipid flies exhibited a significant delay in oviposition compared with those reared on high-protein flies. We conclude that high-lipid prey has negative effects on the survival and reproductive function of H. graminicola. Our study thus provides clear evidence that low plasticity with fast development to a certain size means a high nutritional requirement for protein at a cost of lower survival and prolonged time to egg laying when prey have low protein-to-lipid content in H. graminicola.


Sign in / Sign up

Export Citation Format

Share Document