locomotory behavior
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 17)

H-INDEX

15
(FIVE YEARS 3)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bokeon Kwak ◽  
Soyoung Choi ◽  
Jiyeon Maeng ◽  
Joonbum Bae

AbstractCertain aquatic insects rapidly traverse water by secreting surfactants that exploit the Marangoni effect, inspiring the development of many self-propulsion systems. In this research, to demonstrate a new way of delivering liquid fuel to a water surface for Marangoni propulsion, a microfluidic pump driven by the flow-imbibition by a porous medium was integrated to create a novel self-propelling robot. After triggered by a small magnet, the liquid fuel stored in a microchannel is autonomously transported to an outlet in a mechanically tunable manner. We also comprehensively analyzed the effects of various design parameters on the robot’s locomotory behavior. It was shown that the traveled distance, energy density of fuel, operation time, and motion directionality were tunable by adjusting porous media, nozzle diameter, keel-extrusion, and the distance between the nozzle and water surface. The utilization of a microfluidic device in bioinspired robot is expected to bring out new possibilities in future development of self-propulsion system.


2021 ◽  
Vol 2021 (11) ◽  
pp. pdb.top106849
Author(s):  
Ben G. Szaro

Because of its resilience to hypoxia and trauma, the frog has long been a favored preparation of neurophysiologists. Its use has led to the discovery of many fundamental properties of neurons and neural circuits. Neurophysiologists were originally attracted to Xenopus embryos, tadpoles, and frogs because of their ready availability, their external development, and the anatomical accessibility and relatively simple neural circuitry of the Xenopus visual, locomotory, and vocalization systems. Nowadays, the sequencing of Xenopus genomes and the panoply of tools for manipulating gene expression have created new opportunities for neurophysiologists to address the molecular underpinnings of how neurons generate behaviors in a vertebrate. Here, we introduce protocols for harnessing the power of Xenopus for performing electrophysiological studies of neural circuitry in the developing optic tectum and spinal cord, as well as in vocalization, and for studying the ontogeny of locomotory behavior.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (2) ◽  
pp. e1009346
Author(s):  
Pratima Pandey ◽  
Anuradha Singh ◽  
Harjot Kaur ◽  
Anindya Ghosh-Roy ◽  
Kavita Babu

Ethanol is a widely used drug, excessive consumption of which could lead to medical conditions with diverse symptoms. Ethanol abuse causes dysfunction of memory, attention, speech and locomotion across species. Dopamine signaling plays an essential role in ethanol dependent behaviors in animals ranging from C. elegans to humans. We devised an ethanol dependent assay in which mutants in the dopamine autoreceptor, dop-2, displayed a unique sedative locomotory behavior causing the animals to move in circles while dragging the posterior half of their body. Here, we identify the posterior dopaminergic sensory neuron as being essential to modulate this behavior. We further demonstrate that in dop-2 mutants, ethanol exposure increases dopamine secretion and functions in a DVA interneuron dependent manner. DVA releases the neuropeptide NLP-12 that is known to function through cholinergic motor neurons and affect movement. Thus, DOP-2 modulates dopamine levels at the synapse and regulates alcohol induced movement through NLP-12.


Pathogens ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 983
Author(s):  
Natalia Schiefermeier-Mach ◽  
Thomas Haller ◽  
Stephan Geley ◽  
Susanne Perkhofer

Monocytes are important players to combat the ubiquitously present fungus Aspergillus fumigatus. Recruitment of monocytes to sites of fungal A. fumigatus infection has been shown in vivo. Upon exposure to A. fumigatus in vitro, purified murine and human blood monocytes secrete inflammatory cytokines and fungicidal mediators. Mononuclear tissue phagocytes are phenotypically and functionally different from those circulating in the blood and their role in antifungal defenses is much less understood. In this study, we identified a population of migrating CD43+ monocytes in cells isolated from rat distal lungs. These cells are phenotypically different from alveolar macrophages and show distinct locomotory behavior on the surface of primary alveolar cells resembling previously described endothelial patrolling monocytes. Upon challenge, the CD43+ monocytes internalized A. fumigatus conidia resulting in inhibition of their germination and hyphal growth. Thus, migrating lung monocytes might play an important role in local defense against pulmonary pathogens.


Author(s):  
Arbel Harpak ◽  
Nandita Garud ◽  
Noah A Rosenberg ◽  
Dmitri A Petrov ◽  
Matthew Combs ◽  
...  

Abstract Brown rats (Rattus norvegicus) thrive in urban environments by navigating the anthropocentric environment and taking advantage of human resources and by-products. From the human perspective, rats are a chronic problem that causes billions of dollars in damage to agriculture, health and infrastructure. Did genetic adaptation play a role in the spread of rats in cities? To approach this question, we collected whole-genome sequences from 29 brown rats from New York City (NYC) and scanned for genetic signatures of adaptation. We tested for (i) high-frequency, extended haplotypes that could indicate selective sweeps and (ii) loci of extreme genetic differentiation between the NYC sample and a sample from the presumed ancestral range of brown rats in northeast China. We found candidate selective sweeps near or inside genes associated with metabolism, diet, the nervous system and locomotory behavior. Patterns of differentiation between NYC and Chinese rats at putative sweep loci suggest that many sweeps began after the split from the ancestral population. Together, our results suggest several hypotheses on adaptation in rats living in close proximity to humans.


Author(s):  
Arbel Harpak ◽  
Nandita Garud ◽  
Noah A. Rosenberg ◽  
Dmitri A. Petrov ◽  
Matthew Combs ◽  
...  

AbstractBrown rats (Rattus norvegicus) thrive in urban environments by navigating the anthropocentric environment and taking advantage of human resources and by-products. From the human perspective, rats are a chronic problem that causes billions of dollars in damage to agriculture, health and infrastructure. Did genetic adaptation play a role in the spread of rats in cities? To approach this question, we collected whole-genome sequences from 29 brown rats from New York City (NYC) and scanned for genetic signatures of adaptation. We tested for (i) high-frequency, extended haplotypes that could indicate selective sweeps and (ii) loci of extreme genetic differentiation between the NYC sample and a sample from the presumed ancestral range of brown rats in northeast China. We found candidate selective sweeps near or inside genes associated with metabolism, diet, the nervous system and locomotory behavior. Patterns of differentiation between NYC and Chinese rats at putative sweep loci suggests that many sweeps began after the split from the ancestral population. Together, our results suggest several hypotheses on adaptation in rats living in close proximity to humans.


Sign in / Sign up

Export Citation Format

Share Document