scholarly journals Phylogenetic congruence of lichenised fungi and algae is affected by spatial scale and taxonomic diversity

PeerJ ◽  
2014 ◽  
Vol 2 ◽  
pp. e573 ◽  
Author(s):  
Hannah L. Buckley ◽  
Arash Rafat ◽  
Johnathon D. Ridden ◽  
Robert H. Cruickshank ◽  
Hayley J. Ridgway ◽  
...  
2021 ◽  
Author(s):  
Elizabeth G. Simpson ◽  
William D. Pearse

AbstractThe relative influence of ecological assembly processes, such as environmental filtering, competition, and dispersal, vary across spatial scales. Changes in phylogenetic and taxonomic diversity across environments provide insight into these processes, however, it is challenging to assess the effect of spatial scale on these metrics. Here, we outline a nested sampling design that fractally spaces sampling locations to concentrate statistical power across spatial scales in a study area. We test this design in northeast Utah, at a study site with distinct vegetation types (including sagebrush steppe and mixed conifer forest), that vary across environmental gradients. We demonstrate the power of this design to detect changes in community phylogenetic diversity across environmental gradients and assess the spatial scale at which the sampling design captures the most variation in empirical data. We find clear evidence of broad-scale changes in multiple features of phylogenetic and taxonomic diversity across aspect. At finer scales, we find additional variation in phylo-diversity, highlighting the power of our fractal sampling design to efficiently detect patterns across multiple spatial scales. Thus, our fractal sampling design and analysis effectively identify important environmental gradients and spatial scales that drive community phylogenetic structure. We discuss the insights this gives us into the ecological assembly processes that differentiate plant communities found in northeast Utah.


Author(s):  
PA Peres ◽  
AP Ferreira ◽  
GBO Machado ◽  
M Azevedo-Silva ◽  
SGL Siqueira ◽  
...  

2016 ◽  
Vol 27 (3-4) ◽  
pp. 47-54
Author(s):  
K. K. Holoborodko ◽  
V. O. Makhina ◽  
K. S. Buchnieva ◽  
O. E. Pakhomov

Floodplain valley of the Dnieper river midstream is a unique natural complex, having a great bìogeographical, ecological, environmental, historical and recreational values. In 1990, the Natural reserve «Dniprovsko-Orilsky» was established within the area. The Natural reserve «Dniprovsko-Orilsky» is environmentally protected site within the Dnipropetrovsk region, Dnipropetrovsk oblast, Ukraine. This reserve occupies part of the Dnieper river valley and marshy and reedy banks of Protovch river (existing bed of Oril river). It was created by Regulation of the Council of Ministers of the USSR of 15 September 1990, No. 262, based on common zoological and ornitological Nature reserves «Taromskì plavni» and «Obukhovskie zaplavy». On the territory of the Natural reserve «Dniprovsko-Orilsky», they were registered 32 Lepidoptera species listed in the List of Threatened Species at different categories (5 species in IUCN Red List ; 18 in Red Data Book of Ukraine; 7 in European Red List of plants and animals endangered on a global scale; 31 in Red Book of Dnipropetrovsk oblast). The main scientific materials were author’s collections from area of research and materials of entomological funds, Department of Zoology and Ecology, Oles Honchar Dnipropetrovsk National University (mostly Memorial Collection of V. O. Barsov). Field surveys covered all the ecosystems basic on size and degree of protection. The author’s researches have conducted over the past decade during annual expeditions to the Reserve. Taxonomic structure of the complex is quite diverse, and represented by all the major families of higher millers and rhopalocera, having protectedstatus. In relation to taxonomy, this complex formed by representatives of five superfamilies (Zyganoidea, Noctuoidea, Bombycoidea, Hesperioidea, Papilionoidea) from 11 families (Zygaenidae, Saturniidae, Sphingidae, Noctuidae Arctiidae Hesperiidae, Papilionidae, Pieridae, Nymphalidae, Satyridae, Lycaenidae). High taxonomic diversity can be explained by unique geographical location of the reserve in azonal conditions of the Dnieper river valley. Such location allows to enter different zoogeographic Lepidoptera groups on the reserve territory. Zoogeographic analysis of species protected within the reserve territory selected 7 basic groups. It was found that most of the globally rare species have Mediterranean origin (39 %); species of Palearctic origin are in second place (22 %); Western Palearctic and Ponto-Kazakh types of areas are same of number of species, and come third (11 %); and others come 17 % (European, Euro-Siberian, and Holarctic). This fauna component is specific due to presence of so-called «northern» species that make up 40 % (representatives of Palearctic, Western Palearctic, Euro-Siberian, European and Holarctic groups). Their existence within the reserve territory is only possible due to development of boreal valley ecosystems. High taxonomic diversity can be explained by unique geographical location of the reserve in azonal conditions of the Dnieper river valley. Such location allows to enter different zoogeographic Lepidoptera groups on the reserve territory. Zoogeographic analysis of species protected within the reserve territory selected 7 basic groups. It was found that most of the globally rare species have Mediterranean origin (39 %); species of Palearctic origin are in second place (22 %); Western Palearctic and Ponto-Kazakh types of areas are same of number of species, and come third (11 %); and others come 17 % (European, Euro-Siberian, and Holarctic). This fauna component is specific due to presence of so-called «northern» species that make up 40 % (representatives of Palearctic, Western Palearctic, Euro-Siberian, European and Holarctic groups). Their existence within the reserve territory is only possible due to development of boreal valley ecosystems.


Sign in / Sign up

Export Citation Format

Share Document