scholarly journals Dissection of three quantitative trait loci for grain size on the long arm of chromosome 10 in rice (Oryza sativa L.)

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6966 ◽  
Author(s):  
Yu-Jun Zhu ◽  
Zhi-Chao Sun ◽  
Xiao-Jun Niu ◽  
Jie-Zheng Ying ◽  
Ye-Yang Fan ◽  
...  

Background Thousand grain weight is a key component of grain yield in rice, and a trait closely related to grain length (GL) and grain width (GW) that are important traits for grain quality. Causal genes for 16 quantitative trait loci (QTL) affecting these traits have been cloned, but more QTL remain to be characterized for establishing a genetic regulating network. A QTL controlling grain size in rice, qGS10, was previously mapped in the interval RM6100–RM228 on chromosome 10. This study aimed to delimitate this QTL to a more precise location. Method A total of 12 populations were used. The ZC9 population comprised 203 S1:2 families derived from a residual heterozygous (RH) plant in the F9 generation of the indica rice cross Teqing (TQ)/IRBB52, segregating the upper region of RM6100–RM228 and three more regions on chromosomes 1, 9, and 11. The Ti52-1 population comprised 171 S1 plants derived from one RH plant in F7 of TQ/IRBB52, segregating a single interval that was in the lower portion of RM6100–RM228. The other ten populations were all derived from Ti52-1, including five S1 populations with sequential segregating regions covering the target region and five near isogenic line (NIL) populations maintaining the same segregating pattern. QTL analysis for 1,000-grain weight, GL, and GW was performed using QTL IciMapping and SAS procedure GLM. Result Three QTL were separated in the original qGS10 region. The qGL10.1 was located in the upper region RM6704–RM3773, shown to affect GL only. The qGS10.1 was located within a 207.1-kb interval flanked by InDel markers Te20811 and Te21018, having a stable and relatively high effect on all the three traits analyzed. The qGS10.2 was located within a 1.2-Mb interval flanked by simple sequence repeat markers RM3123 and RM6673. This QTL also affected all the three traits but the effect was inconsistent across different experiments. QTL for grain size were also detected in all the other three segregating regions. Conclusion Three QTL for grain size that were tightly linked on the long arm of chromosome 10 of rice were separated using NIL populations with sequential segregating regions. One of them, qGS10.1, had a stable and relatively high effect on grain weight, GL, and GW, providing a good candidate for gene cloning. Another QTL, qGS10.2, had a significant effect on all the three traits but the effect was inconsistent across different experiments, providing an example of genotype-by-environmental interaction.

2012 ◽  
Vol 31 (2) ◽  
pp. 451-461 ◽  
Author(s):  
Liang Sun ◽  
Dapeng Ma ◽  
Huihui Yu ◽  
Fasong Zhou ◽  
Yibo Li ◽  
...  

2013 ◽  
Vol 1 (1) ◽  
pp. 70-76 ◽  
Author(s):  
Liang Guo ◽  
Kai Wang ◽  
Junyu Chen ◽  
Derun Huang ◽  
Yeyang Fan ◽  
...  

Genetics ◽  
2002 ◽  
Vol 160 (2) ◽  
pp. 683-696 ◽  
Author(s):  
Justin O Borevitz ◽  
Julin N Maloof ◽  
Jason Lutes ◽  
Tsegaye Dabi ◽  
Joanna L Redfern ◽  
...  

AbstractWe have mapped quantitative trait loci (QTL) responsible for natural variation in light and hormone response between the Cape Verde Islands (Cvi) and Landsberg erecta (Ler) accessions of Arabidopsis thaliana using recombinant inbred lines (RILs). Hypocotyl length was measured in four light environments: white, blue, red, and far-red light and in the dark. In addition, white light plus gibberellin (GA) and dark plus the brassinosteroid biosynthesis inhibitor brassinazole (BRZ) were used to detect hormone effects. Twelve QTL were identified that map to loci not previously known to affect light response, as well as loci where candidate genes have been identified from known mutations. Some QTL act in all environments while others show genotype-by-environment interaction. A global threshold was established to identify a significant epistatic interaction between two loci that have few main effects of their own. LIGHT1, a major QTL, has been confirmed in a near isogenic line (NIL) and maps to a new locus with effects in all light environments. The erecta mutation can explain the effect of the HYP2 QTL in the blue, BRZ, and dark environments, but not in far-red. LIGHT2, also confirmed in an NIL, has effects in white and red light and shows interaction with GA. The phenotype and map position of LIGHT2 suggest the photoreceptor PHYB as a candidate gene. Natural variation in light and hormone response thus defines both new genes and known genes that control light response in wild accessions.


2003 ◽  
Vol 53 (3) ◽  
pp. 255-262 ◽  
Author(s):  
Sohei Kobayashi ◽  
Yoshimichi Fukuta ◽  
Satoshi Morita ◽  
Tadashi Sato ◽  
Mitsuru Osaki ◽  
...  

Plant Science ◽  
2006 ◽  
Vol 170 (1) ◽  
pp. 12-17 ◽  
Author(s):  
Yanjun Dong ◽  
H. Kamiuten ◽  
Zhongnan Yang ◽  
Dongzhi Lin ◽  
T. Ogawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document