scholarly journals State-space modeling of the dynamics of temporal plant cover using visually determined class data

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9383
Author(s):  
Hiroki Itô

A lot of vegetation-related data have been collected as an ordered plant cover class that can be determined visually. However, they are difficult to analyze numerically as they are in an ordinal scale and have uncertainty in their classification. Here, I constructed a state-space model to estimate unobserved plant cover proportions (ranging from zero to one) from such cover class data. The model assumed that the data were measured longitudinally, so that the autocorrelations in the time-series could be utilized to estimate the unobserved cover proportion. The model also assumed that the quadrats where the data were collected were arranged sequentially, so that the spatial autocorrelations also could be utilized to estimate the proportion. Assuming a beta distribution as the probability distribution of the cover proportion, the model was implemented with a regularized incomplete beta function, which is the cumulative density function of the beta distribution. A simulated dataset and real datasets, with one-dimensional spatial structure and longitudinal survey, were fit to the model, and the parameters were estimated using the Markov chain Monte Carlo method. Then, the validity was examined using posterior predictive checks. As a result of the fitting, the Markov chain successfully converged to the stationary distribution, and the posterior predictive checks did not show large discrepancies. For the simulated dataset, the estimated values were close to the values used for the data generation. The estimated values for the real datasets also seemed to be reasonable. These results suggest that the proposed state-space model was able to successfully estimate the unobserved cover proportion. The present model is applicable to similar types of plant cover class data, and has the possibility to be expanded, for example, to incorporate a two-dimensional spatial structure and/or zero-inflation.

Author(s):  
Mahyar Akbari ◽  
Abdol Majid Khoshnood ◽  
Saied Irani

In this article, a novel approach for model-based sensor fault detection and estimation of gas turbine is presented. The proposed method includes driving a state-space model of gas turbine, designing a novel L1-norm Lyapunov-based observer, and a decision logic which is based on bank of observers. The novel observer is designed using multiple Lyapunov functions based on L1-norm, reducing the estimation noise while increasing the accuracy. The L1-norm observer is similar to sliding mode observer in switching time. The proposed observer also acts as a low-pass filter, subsequently reducing estimation chattering. Since a bank of observers is required in model-based sensor fault detection, a bank of L1-norm observers is designed in this article. Corresponding to the use of the bank of observers, a two-step fault detection decision logic is developed. Furthermore, the proposed state-space model is a hybrid data-driven model which is divided into two models for steady-state and transient conditions, according to the nature of the gas turbine. The model is developed by applying a subspace algorithm to the real field data of SGT-600 (an industrial gas turbine). The proposed model was validated by applying to two other similar gas turbines with different ambient and operational conditions. The results of the proposed approach implementation demonstrate precise gas turbine sensor fault detection and estimation.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ji Chol ◽  
Ri Jun Il

Abstract The modeling of counter-current leaching plant (CCLP) in Koryo Extract Production is presented in this paper. Koryo medicine is a natural physic to be used for a diet and the medical care. The counter-current leaching method is mainly used for producing Koryo medicine. The purpose of the modeling in the previous works is to indicate the concentration distributions, and not to describe the model for the process control. In literature, there are no nearly the papers for modeling CCLP and especially not the presence of papers that have described the issue for extracting the effective components from the Koryo medicinal materials. First, this paper presents that CCLP can be shown like the equivalent process consisting of two tanks, where there is a shaking apparatus, respectively. It allows leachate to flow between two tanks. Then, this paper presents the principle model for CCLP and the state space model on based it. The accuracy of the model has been verified from experiments made at CCLP in the Koryo Extract Production at the Gang Gyi Koryo Manufacture Factory.


2020 ◽  
Vol 11 (3) ◽  
pp. 1928-1941
Author(s):  
Huifang Wang ◽  
Kuan Jiang ◽  
Mohammad Shahidehpour ◽  
Benteng He

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Margarida Barcelo-Serra ◽  
Sebastià Cabanellas ◽  
Miquel Palmer ◽  
Marta Bolgan ◽  
Josep Alós

AbstractMotorboat noise is recognized as a major source of marine pollution, however little is known about its ecological consequences on coastal systems. We developed a State Space Model (SSM) that incorporates an explicit dependency on motorboat noise to derive its effects on the movement of resident fish that transition between two behavioural states (swimming vs. hidden). To explore the performance of our model, we carried out an experiment where free-living Serranus scriba were tracked with acoustic tags, while motorboat noise was simultaneously recorded. We fitted the generated tracking and noise data into our SSM and explored if the noise generated by motorboats passing at close range affected the movement pattern and the probability of transition between the two states using a Bayesian approach. Our results suggest high among individual variability in movement patterns and transition between states, as well as in fish response to the presence of passing motorboats. These findings suggest that the effects of motorboat noise on fish movement are complex and require the precise monitoring of large numbers of individuals. Our SSM provides a methodology to address such complexity and can be used for future investigations to study the effects of noise pollution on marine fish.


Sign in / Sign up

Export Citation Format

Share Document