scholarly journals Seismic Fragility Functions for Steel Moment Resisting Frames using Incremental Dynamic Analyses

Author(s):  
Seung-Won Lee ◽  
Waon-Ho Yi ◽  
Hyung-Joon Kim
2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Orlando Arroyo ◽  
Angie V. Osorio ◽  
María Catalina Vargas

Steel moment resisting frames are a structural system used throughout the world, mainly for their ductility and the speed and ease of their construction. These buildings are usually designed per procedures based on seismic design codes, seeking to minimize the total cost of the building. To aid in better building designs, researchers have proposed different methodologies, which have been proven to be effective. However, their practical use has been limited by their low computational efficiency and their difficulty to implement by practicing engineers. This article proposes a method to improve the seismic performance of steel moment resisting frame buildings based on eigenfrequency optimization. The main advantage of the proposed method is its computational efficiency and that it is simple to implement. The method is demonstrated for a four-story and an eight-story building, whose seismic performance is compared to traditional building designs using nonlinear analyses and seismic fragility functions. The results show that the seismic performance improves significantly with the proposed method with respect to that of traditionally designed buildings, reducing their seismic fragility and increasing their overstrength. These findings and the computational efficiency of the method suggest that it is a viable alternative for use within engineering practice.


2021 ◽  
Vol 7 ◽  
Author(s):  
Hammad El Jisr ◽  
Dimitrios G. Lignos

Earthquake loss estimation in composite-steel moment resisting frames (MRFs) necessitates a proper estimation of the level of damage in steel beam-to-slab connections. These usually feature welded headed shear studs to ensure the composite action between the concrete slab and the steel beam. In partially composite steel beams, earthquake-induced damage in the shear studs and the surrounding concrete occurs due to shear stud slip demands. Within such a context, this paper proposes shear slip-based fragility functions to estimate the probability of being or exceeding four damage states in steel beam-slab connections. These damage states include cracking and crushing of the concrete slab in the vicinity of the shear studs, as well as damage in the shear studs themselves. The developed fragility functions are obtained from a gathered dataset of 42 cyclic push-out tests. They incorporate uncertainty associated with specimen-to-specimen variability, along with epistemic uncertainty arising from the finite number of available experimental results. An application of the proposed fragility functions is conducted on a six-story building with composite-steel MRFs. It is shown that steel beam-slab connections along the building height only exhibit light cracking (i.e., crack sizes of 0.3 mm or less) at design basis seismic events. At seismic intensities associated with a low probability of occurrence seismic event (i.e., return period of 2475 years) the nonlinear building simulations suggest that the 25% reduction of the shear stud resistance in steel beam-slab connections with beam depths of 500 mm or less is not imperative to maintain the integrity of the shear stud connectors.


Structures ◽  
2021 ◽  
Vol 32 ◽  
pp. 1646-1664
Author(s):  
Elena Elettore ◽  
Annarosa Lettieri ◽  
Fabio Freddi ◽  
Massimo Latour ◽  
Gianvittorio Rizzano

2021 ◽  
Vol 244 ◽  
pp. 112751
Author(s):  
Carlos Molina Hutt ◽  
Shervin Zahedimazandarani ◽  
Nasser A. Marafi ◽  
Jeffrey W. Berman ◽  
Marc O. Eberhard

Sign in / Sign up

Export Citation Format

Share Document