scholarly journals A Method to Improve the Seismic Performance of Steel Moment Resisting Frames Based on Eigenfrequency Optimization

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Orlando Arroyo ◽  
Angie V. Osorio ◽  
María Catalina Vargas

Steel moment resisting frames are a structural system used throughout the world, mainly for their ductility and the speed and ease of their construction. These buildings are usually designed per procedures based on seismic design codes, seeking to minimize the total cost of the building. To aid in better building designs, researchers have proposed different methodologies, which have been proven to be effective. However, their practical use has been limited by their low computational efficiency and their difficulty to implement by practicing engineers. This article proposes a method to improve the seismic performance of steel moment resisting frame buildings based on eigenfrequency optimization. The main advantage of the proposed method is its computational efficiency and that it is simple to implement. The method is demonstrated for a four-story and an eight-story building, whose seismic performance is compared to traditional building designs using nonlinear analyses and seismic fragility functions. The results show that the seismic performance improves significantly with the proposed method with respect to that of traditionally designed buildings, reducing their seismic fragility and increasing their overstrength. These findings and the computational efficiency of the method suggest that it is a viable alternative for use within engineering practice.

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Hyo Seon Park ◽  
Dong Chul Lee ◽  
Byung Kwan Oh ◽  
Se Woon Choi ◽  
Yousok Kim

This study proposes a performance-based multiobjective optimization seismic retrofit method for steel moment-resisting frames. The brittle joints of pre-Northridge steel moment-resisting frames are retrofitted to achieve ductility; the method involves determining the position and number of connections to be retrofitted. The optimal solution is determined by applying the nondominated sorting genetic algorithm-II (NSGA-II), which acts as a multiobjective seismic retrofit optimization technique. As objective functions, the initial cost for the connection retrofit and lifetime seismic damage cost were selected, and a seismic performance level below the 5% interstory drift ratio was employed as a constraint condition. The proposed method was applied to the SAC benchmark three- and nine-story buildings, and several Pareto solutions were obtained. The optimized retrofit solutions indicated that the lifetime seismic damage cost decreased as the initial retrofit cost increased. Although every Pareto solution existed within a seismic performance boundary set by a constraint function, the seismic performance tended to increase with the initial retrofit cost. Analysis and economic assessment of the relations among the initial retrofit cost, lifetime seismic damage cost, total cost, and seismic performance of the derived Pareto solution allow building owners to make seismic retrofit decisions more rationally.


2014 ◽  
Vol 101 ◽  
pp. 437-454 ◽  
Author(s):  
Andre Tenchini ◽  
Mario D'Aniello ◽  
Carlos Rebelo ◽  
Raffaele Landolfo ◽  
Luis Simões da Silva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document