scholarly journals Optimization of Shortest Path Problem using Dijkstra’s Algorithm in Imprecise Environment

Author(s):  
Samir Dey ◽  
Sriza Malakar ◽  
Shibnath Rajak

Dijkstra algorithm is a widely used algorithm to find the shortest path between two specified nodes in a network problem. In this paper, a generalized fuzzy Dijkstra algorithm is proposed to find the shortest path using a new parameterized defuzzification method. Here, we address most important issue like the decision maker’s choice. A numerical example is used to illustrate the efficiency of the proposed algorithm.

2021 ◽  
Vol 348 ◽  
pp. 01001
Author(s):  
Paryati ◽  
Krit Salahddine

Kruskal’s Algorithm is an algorithm used to find the minimum spanning tree in graphical connectivity that provides the option to continue processing the least-weighted margins. In the Kruskal algorithm, ordering the weight of the ribs makes it easy to find the shortest path. This algorithm is independent in nature which will facilitate and improve path creation. Based on the results of the application system trials that have been carried out in testing and comparisons between the Kruskal algorithm and the Dijkstra algorithm, the following conclusions can be drawn: that a strength that is the existence of weight sorting will facilitate the search for the shortest path. And considering the characteristics of Kruskal’s independent algorithm, it will facilitate and improve the formation of the path. The weakness of the Kruskal algorithm is that if the number of nodes is very large, it will be slower than Dijkstra’s algorithm because it has to sort thousands of vertices first, then form a path.


2003 ◽  
Vol 29 (1) ◽  
pp. 135-143 ◽  
Author(s):  
Mark-Jan Nederhof

We discuss weighted deductive parsing and consider the problem of finding the derivation with the lowest weight. We show that Knuth's generalization of Dijkstra's algorithm for the shortest-path problem offers a general method to solve this problem. Our approach is modular in the sense that Knuth's algorithm is formulated independently from the weighted deduction system.


2019 ◽  
Vol 1 (2) ◽  
pp. 41-45
Author(s):  
Md. Almash Alam ◽  
Md. Omar Faruq

Roads play a Major role to the people live in various states, cities, town and villages, from each and every day they travel to work, to schools, to business meetings, and to transport their goods. Even in this modern era whole world used roads, remain one of the most useful mediums used most frequently for transportation and travel. The manipulation of shortest paths between various locations appears to be a major problem in the road networks. The large range of applications and product was introduced to solve or overcome the difficulties by developing different shortest path algorithms. Even now the problem still exists to find the shortest path for road networks. Shortest Path problems are inevitable in road network applications such as city emergency handling and drive guiding system. Basic concepts of network analysis in connection with traffic issues are explored. The traffic condition among a city changes from time to time and there are usually huge amounts of requests occur, it needs to find the solution quickly. The above problems can be rectified through shortest paths by using the Dijkstra’s Algorithm. The main objective is the low cost of the implementation. The shortest path problem is to find a path between two vertices (nodes) on a given graph, such that the sum of the weights on its constituent edges is minimized. This problem has been intensively investigated over years, due to its extensive applications in graph theory, artificial intelligence, computer network and the design of transportation systems. The classic Dijkstra’s algorithm was designed to solve the single source shortest path problem for a static graph. It works starting from the source node and calculating the shortest path on the whole network. Noting that an upper bound of the distance between two nodes can be evaluated in advance on the given transportation network.


2017 ◽  
Vol 10 (1) ◽  
pp. 180-186
Author(s):  
Siddhartha Biswas

In this paper the author introduces the notion of Z-weighted graph or Z-graph in Graph Theory, considers the Shortest Path Problem (SPP) in a Z-graph. The classical Dijkstra’s algorithm to find the shortest path in graphs is not applicable to Z-graphs. Consequently the author proposes a new algorithm called by Z-Dijkstra's Algorithm with the philosophy of the classical Dijkstra's Algorithm to solve the SPP in a Z-graph.


2021 ◽  
Vol 297 ◽  
pp. 01062
Author(s):  
Paryati ◽  
Krit Salahddine

Kruskal’s Algorithm is an algorithm used to find the minimum spanning tree in graphical connectivity that provides the option to continue processing the least-weighted margins. In the Kruskal algorithm, ordering the weight of the ribs makes it easy to find the shortest path. This algorithm is independent in nature which will facilitate and improve path creation. Based on the results of the application system trials that have been carried out in testing and comparisons between the Kruskal algorithm and the Dijkstra algorithm, the following conclusions can be drawn: that a strength that is the existence of weight sorting will facilitate the search for the shortest path. And considering the characteristics of Kruskal’s independent algorithm, it will facilitate and improve the formation of the path. The weakness of the Kruskal algorithm is that if the number of nodes is very large, it will be slower than Dijkstra’s algorithm because it has to sort thousands of vertices first, then form a path.


Sign in / Sign up

Export Citation Format

Share Document