Dijkstra’s Algorithm for Solving the Shortest Path Problem on Networks Under Intuitionistic Fuzzy Environment

2012 ◽  
Vol 11 (4) ◽  
pp. 345-359 ◽  
Author(s):  
Sathi Mukherjee
2003 ◽  
Vol 29 (1) ◽  
pp. 135-143 ◽  
Author(s):  
Mark-Jan Nederhof

We discuss weighted deductive parsing and consider the problem of finding the derivation with the lowest weight. We show that Knuth's generalization of Dijkstra's algorithm for the shortest-path problem offers a general method to solve this problem. Our approach is modular in the sense that Knuth's algorithm is formulated independently from the weighted deduction system.


2019 ◽  
Vol 1 (2) ◽  
pp. 41-45
Author(s):  
Md. Almash Alam ◽  
Md. Omar Faruq

Roads play a Major role to the people live in various states, cities, town and villages, from each and every day they travel to work, to schools, to business meetings, and to transport their goods. Even in this modern era whole world used roads, remain one of the most useful mediums used most frequently for transportation and travel. The manipulation of shortest paths between various locations appears to be a major problem in the road networks. The large range of applications and product was introduced to solve or overcome the difficulties by developing different shortest path algorithms. Even now the problem still exists to find the shortest path for road networks. Shortest Path problems are inevitable in road network applications such as city emergency handling and drive guiding system. Basic concepts of network analysis in connection with traffic issues are explored. The traffic condition among a city changes from time to time and there are usually huge amounts of requests occur, it needs to find the solution quickly. The above problems can be rectified through shortest paths by using the Dijkstra’s Algorithm. The main objective is the low cost of the implementation. The shortest path problem is to find a path between two vertices (nodes) on a given graph, such that the sum of the weights on its constituent edges is minimized. This problem has been intensively investigated over years, due to its extensive applications in graph theory, artificial intelligence, computer network and the design of transportation systems. The classic Dijkstra’s algorithm was designed to solve the single source shortest path problem for a static graph. It works starting from the source node and calculating the shortest path on the whole network. Noting that an upper bound of the distance between two nodes can be evaluated in advance on the given transportation network.


2017 ◽  
Vol 10 (1) ◽  
pp. 180-186
Author(s):  
Siddhartha Biswas

In this paper the author introduces the notion of Z-weighted graph or Z-graph in Graph Theory, considers the Shortest Path Problem (SPP) in a Z-graph. The classical Dijkstra’s algorithm to find the shortest path in graphs is not applicable to Z-graphs. Consequently the author proposes a new algorithm called by Z-Dijkstra's Algorithm with the philosophy of the classical Dijkstra's Algorithm to solve the SPP in a Z-graph.


2021 ◽  
pp. 1-10
Author(s):  
Esra Çakır ◽  
Ziya Ulukan ◽  
Tankut Acarman

Determining the shortest path and calculating the shortest travel time of a complex networks are important for transportation problems. Numerous approaches has been developed to search shortest path on graphs, and one of the well-known is the Dijkstra’s label correcting algorithm. Dijkstra’s approach is capable of determining shortest path of directed or undirected graph with non-negative weighted arcs. To handle with uncertainty in real-life, the Dijkstra’s algorithm should be adapted to fuzzy environment. The weight of arc -which is the vague travel time between two nodes- can be expressed in bipolar neutrosophic fuzzy sets containing positive and negative statements. In addition, the weights of arcs in bipolar neutrosophic fuzzy graphs can be affected by time. This study proposes the extended Dijkstra’s algorithm to search the shortest path and calculate the shortest travel time on a single source time-dependent network of bipolar neutrosophic fuzzy weighted arcs. The proposed approach is illustrated, and the results demonstrate the validity of the extended algorithm. This article is intended to guide future shortest path algorithms on time-dependent fuzzy graphs.


Author(s):  
Samir Dey ◽  
Sriza Malakar ◽  
Shibnath Rajak

Dijkstra algorithm is a widely used algorithm to find the shortest path between two specified nodes in a network problem. In this paper, a generalized fuzzy Dijkstra algorithm is proposed to find the shortest path using a new parameterized defuzzification method. Here, we address most important issue like the decision maker’s choice. A numerical example is used to illustrate the efficiency of the proposed algorithm.


Sign in / Sign up

Export Citation Format

Share Document