Prediction of Atmospheric Pressure at Ground Level using Artificial Neural Network

2013 ◽  
Vol 3 (1) ◽  
pp. 11-18 ◽  
Author(s):  
Angshuman Ray ◽  
Sourav Mukhopadhyay ◽  
Bimal Datta ◽  
Srimanta Pal
Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2390 ◽  
Author(s):  
Olalekan Alade ◽  
Dhafer Al Shehri ◽  
Mohamed Mahmoud ◽  
Kyuro Sasaki

The viscosity data of two heavy oil samples X and Y, with asphaltene contents 24.8% w/w and 18.5% w/w, respectively, were correlated with temperature and pressure using empirical models and the artificial neural network (ANN) approach. The viscosities of the samples were measured over a range of temperatures between 70 °C and 150 °C; and from atmospheric pressure to 7 MPa. It was found that the viscosity of sample X, at 85 °C and atmospheric pressure (0.1 MPa), was 1894 cP and that it increased to 2787 cP at 7 MPa. At 150 °C, the viscosity increased from 28 cP (at 0.1 MPa) to 33 cP at 7 MPa. For sample Y, the viscosity at 70 °C and 0.1 MPa increased from 2260 cP to 3022 cP at 7 MPa. At 120 °C, the viscosity increased from 65 cP (0.1 MPa) to 71 cP at 7 MPa. Notably, using the three-parameter empirical models (Mehrotra and Svrcek, 1986 and 1987), the correlation constants obtained in this study are very close to those that were previously obtained for the Canadian heavy oil samples. Moreover, compared to other empirical models, statistical analysis shows that the ANN model has a better predictive accuracy (R2 ≈ 1) for the viscosity data of the heavy oil samples used in this study.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Fatin Aqilah Binti Abdul Aziz ◽  
Norliza Abd. Rahman ◽  
Jarinah Mohd Ali

Due to the rapid development of economy and society around the world, the most urban city is experiencing tropospheric ozone or commonly known as ground-level air pollutants. The concentration of air pollutants must be identified as an early precaution step by the local environmental or health agencies. This work aims to apply the artificial neural network (ANN) in estimating the ozone concentration forecast in Bangi. It consists of input variables such as temperature, relative humidity, concentration of nitrogen dioxide, time, UVA and UVB rays obtained from routine monitoring, and data recorded. Ten hidden layer is utilized to obtain the optimized ozone concentration, which is the output layer of the ANN framework. The finding showed that the meteorology condition and emission patterns play an important part in influencing the ozone concentration. However, a single network is sufficient enough to estimate the concentration despite any circumstances. Thus, it can be concluded that ANN is able to give reliable and satisfactory estimations of ozone concentration for the following day.


2000 ◽  
Vol 25 (4) ◽  
pp. 325-325
Author(s):  
J.L.N. Roodenburg ◽  
H.J. Van Staveren ◽  
N.L.P. Van Veen ◽  
O.C. Speelman ◽  
J.M. Nauta ◽  
...  

2004 ◽  
Vol 171 (4S) ◽  
pp. 502-503
Author(s):  
Mohamed A. Gomha ◽  
Khaled Z. Sheir ◽  
Saeed Showky ◽  
Khaled Madbouly ◽  
Emad Elsobky ◽  
...  

1998 ◽  
Vol 49 (7) ◽  
pp. 717-722 ◽  
Author(s):  
M C M de Carvalho ◽  
M S Dougherty ◽  
A S Fowkes ◽  
M R Wardman

Sign in / Sign up

Export Citation Format

Share Document