Efficient Indoor Localization Algorithm Using Multi Path Loss Model

Author(s):  
Byeong-ho Lee ◽  
YoungJoon Kim ◽  
Hyoungmin So ◽  
Seong-Cheol Kim
2021 ◽  
pp. 1-1
Author(s):  
Byeong-ho Lee ◽  
Doyoung Ham ◽  
Jeongsik Choi ◽  
Seong-Cheol Kim ◽  
Yong-Hwa Kim

2019 ◽  
Vol 15 (5) ◽  
pp. 155014771985203
Author(s):  
Wenyan Liu ◽  
Xiangyang Luo ◽  
Qing Mu ◽  
Yimin Liu ◽  
Fenlin Liu

The localization accuracy of the existing methods for indoor Wi-Fi access points ranging-based localization depends on the accuracy of the received signal strength measured. Because the existing ranging-based methods are interfered by various indoor environmental factors, it is difficult to accurately measure the received signal strength, which leads to the problem of low localization accuracy of the indoor Wi-Fi access points. An indoor Wi-Fi access points localization algorithm based on improved path loss model parameter calculation method and recursive partition is proposed in this article. The algorithm recursively partitions the region where the target Wi-Fi access points are located according to the idea of quadtree partition, and partitions it into same sub-grids, which is sequentially performed until the sub-grids are smaller than the set threshold. The detection device is used at the detection location of the grids to measure the received signal strength, which is from the detection points to the target access point, the grid center point is used as the location of the candidate target access point, the parameters in the path loss model are calculated by using the signal strength differences between the detection points, and then the distances between the detection points and the target access point are calculated by using the signal strength values from the detection points to the target access point. Finally, the location of the target access point is estimated by executing a localization algorithm, and the location of the grid center point closest to the target access point is taken as the location of the target access point. The experimental results show that under the premise that the target access point can be found, the proposed algorithm reduces the use of the device and improves the localization accuracy compared with the typical localization method.


2019 ◽  
Vol E102.B (8) ◽  
pp. 1676-1688 ◽  
Author(s):  
Mitsuki NAKAMURA ◽  
Motoharu SASAKI ◽  
Wataru YAMADA ◽  
Naoki KITA ◽  
Takeshi ONIZAWA ◽  
...  

Author(s):  
Abdullah Genc

Abstract In this paper, a new empirical path loss model based on frequency, distance, and volumetric occupancy rate is generated at the 3.5 and 4.2 GHz in the scope of 5G frequency bands. This study aims to determine the effect of the volumetric occupancy rate on path loss depending on the foliage density of the trees in the pine forest area. Using 4.2 GHz and the effect of the volumetric occupancy rate contributes to the literature in terms of novelty. Both the reference measurements to generate a model and verification measurements to verify the proposed models are conducted in three different regions of the forest area with double ridged horn antennas. These regions of the artificial forest area consist of regularly sorted and identical pine trees. Root mean square error (RMSE) and R-squared values are calculated to evaluate the performance of the proposed model. For 3.5 and 4.2 GHz, while the RMSEs are 3.983 and 3.883, the values of R-squared are 0.967 and 0.963, respectively. Additionally, the results are compared with four path loss models which are commonly used in the forest area. The proposed one has the best performance among the other models with values 3.98 and 3.88 dB for 3.5 and 4.2 GHz.


Author(s):  
Arumjeni Mitayani ◽  
Galih Nugraha Nurkahfi ◽  
Mochamad Mardi Marta Dinata ◽  
Vita Awalia Mardiana ◽  
Nasrullah Armi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document