Changes in Middle Cerebral Artery Blood Flow Velocity During Sonolysis Using a Diagnostic Transcranial Probe With a 2-MHz Doppler Frequency in Healthy Volunteers

2012 ◽  
Vol 31 (11) ◽  
pp. 1789-1794 ◽  
Author(s):  
Petr Bardoň ◽  
Martin Kuliha ◽  
Roman Herzig ◽  
Daniel Šaňák ◽  
Kateřina Langová ◽  
...  
2012 ◽  
Vol 303 (11) ◽  
pp. R1127-R1135 ◽  
Author(s):  
Ronan M. G. Berg ◽  
Ronni R. Plovsing ◽  
Andreas Ronit ◽  
Damian M. Bailey ◽  
Niels-Henrik Holstein-Rathlou ◽  
...  

Sepsis is frequently complicated by brain dysfunction, which may be associated with disturbances in cerebral autoregulation, rendering the brain susceptible to hypoperfusion and hyperperfusion. The purpose of the present study was to assess static and dynamic cerebral autoregulation 1) in a human experimental model of the systemic inflammatory response during early sepsis and 2) in patients with advanced sepsis. Cerebral autoregulation was tested using transcranial Doppler ultrasound in healthy volunteers ( n = 9) before and after LPS infusion and in patients with sepsis ( n = 16). Static autoregulation was tested by norepinephrine infusion and dynamic autoregulation by transfer function analysis (TFA) of spontaneous oscillations between mean arterial blood pressure and middle cerebral artery blood flow velocity in the low frequency range (0.07–0.20 Hz). Static autoregulatory performance after LPS infusion and in patients with sepsis was similar to values in healthy volunteers at baseline. In contrast, TFA showed decreased gain and an increased phase difference between blood pressure and middle cerebral artery blood flow velocity after LPS (both P < 0.01 vs. baseline); patients exhibited similar gain but lower phase difference values ( P < 0.01 vs. baseline and LPS), indicating a slower dynamic autoregulatory response. Our findings imply that static and dynamic cerebral autoregulatory performance may disassociate in sepsis; thus static autoregulation was maintained both after LPS and in patients with sepsis, whereas dynamic autoregulation was enhanced after LPS and impaired with a prolonged response time in patients. Hence, acute surges in blood pressure may adversely affect cerebral perfusion in patients with sepsis.


Stroke ◽  
2000 ◽  
Vol 31 (8) ◽  
pp. 1897-1903 ◽  
Author(s):  
Lewis A. Lipsitz ◽  
Seiji Mukai ◽  
Jason Hamner ◽  
Margaret Gagnon ◽  
Viken Babikian

1995 ◽  
Vol 83 (4) ◽  
pp. 721-726. ◽  
Author(s):  
Christian Werner ◽  
Eberhard Kochs ◽  
Hanswerner Bause ◽  
William E. Hoffman ◽  
Jochen Schulte am Esch

Background The current study investigates the effects of sufentanil on cerebral blood flow velocity and intracranial pressure (ICP) in 30 patients with intracranial hypertension after severe brain trauma (Glasgow coma scale &lt; 6). Methods Mechanical ventilation (FIO2 0.25-0.4) was adjusted to maintain arterial carbon dioxide tensions of 28-30 mmHg. Continuous infusion of midazolam (200 micrograms/kg/h intravenous) and fentanyl (2 micrograms/kg/h intravenous) was used for sedation. Mean arterial blood pressure (MAP, mmHg) was adjusted using norepinephrine infusion (1-5 micrograms/min). Mean blood flow velocity (Vmean, cm/s) was measured in the middle cerebral artery using a 2-MHz transcranial Doppler sonography system. ICP (mmHg) was measured using an epidural probe. After baseline measurements, a bolus of 3 micrograms/kg sufentanil was injected, and all parameters were continuously recorded for 30 min. The patients were assigned retrospectively to the following groups according to their blood pressure responses to sufentanil: group 1, MAP decrease of less than 10 mmHg, and group 2, MAP decrease of more than 10 mmHg. Results Heart rate, arterial blood gases, and esophageal temperature did not change over time in all patients. In 18 patients, MAP did not decrease after sufentanil (group 1). In 12 patients, sufentanil decreased MAP &gt; 10 mmHg from baseline despite norepinephrine infusion (group 2). ICP was constant in patients with maintained MAP (group 1) but was significantly increased in patients with decreased MAP. Vmean did not change with sufentanil injection regardless of changes in MAP. Conclusions The current data show that sufentanil (3 micrograms/kg intravenous) has no significant effect on middle cerebral artery blood flow velocity and ICP in patients with brain injury, intracranial hypertension, and controlled MAP. However, transient increases in ICP without changes in middle cerebral artery blood flow velocity may occur concomitant with decreases in MAP. This suggests that increases in ICP seen with sufentanil may be due to autoregulatory decreases in cerebral vascular resistance secondary to systemic hypotension.


Sign in / Sign up

Export Citation Format

Share Document