Numerical approach for solving neutral differential equation with deviating argument

Author(s):  
H. Mesgarani ◽  
R. Mollapourasl ◽  
A. Ostadi
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Mohammed Al-Smadi ◽  
Nadir Djeddi ◽  
Shaher Momani ◽  
Shrideh Al-Omari ◽  
Serkan Araci

AbstractOur aim in this paper is presenting an attractive numerical approach giving an accurate solution to the nonlinear fractional Abel differential equation based on a reproducing kernel algorithm with model endowed with a Caputo–Fabrizio fractional derivative. By means of such an approach, we utilize the Gram–Schmidt orthogonalization process to create an orthonormal set of bases that leads to an appropriate solution in the Hilbert space $\mathcal{H}^{2}[a,b]$ H 2 [ a , b ] . We investigate and discuss stability and convergence of the proposed method. The n-term series solution converges uniformly to the analytic solution. We present several numerical examples of potential interests to illustrate the reliability, efficacy, and performance of the method under the influence of the Caputo–Fabrizio derivative. The gained results have shown superiority of the reproducing kernel algorithm and its infinite accuracy with a least time and efforts in solving the fractional Abel-type model. Therefore, in this direction, the proposed algorithm is an alternative and systematic tool for analyzing the behavior of many nonlinear temporal fractional differential equations emerging in the fields of engineering, physics, and sciences.


1992 ◽  
Vol 15 (3) ◽  
pp. 509-515 ◽  
Author(s):  
B. S. Lalli ◽  
B. G. Zhang

An existence criterion for nonoscillatory solution for an odd order neutral differential equation is provided. Some sufficient conditions are also given for the oscillation of solutions of somenth order equations with nonlinearity in the neutral term.


2011 ◽  
Vol 2011 ◽  
pp. 1-28 ◽  
Author(s):  
Jingli Ren ◽  
Zhibo Cheng ◽  
Yueli Chen

By applying Green's function of third-order differential equation and a fixed point theorem in cones, we obtain some sufficient conditions for existence, nonexistence, multiplicity, and Lyapunov stability of positive periodic solutions for a third-order neutral differential equation.


2019 ◽  
Vol 17 (1) ◽  
pp. 172-190 ◽  
Author(s):  
Shaowen Yao ◽  
Zhibo Cheng

Abstract This paper is devoted to the existence of a periodic solution for ϕ-Laplacian neutral differential equation as follows $$\begin{array}{} (\phi(x(t)-cx(t-\tau))')'=f(t,x(t),x'(t)). \end{array}$$ By applications of an extension of Mawhin’s continuous theorem due to Ge and Ren, we obtain that given equation has at least one periodic solution. Meanwhile, the approaches to estimate a priori bounds of periodic solutions are different from the corresponding ones of the known literature.


Sign in / Sign up

Export Citation Format

Share Document