scholarly journals PREPARATION AND EVALUATION OF MELOXICAM SOLID DISPERSIONS BY SOLVENT EVAPORATION METHOD

2014 ◽  
Vol 5 (11) ◽  
pp. 838-845 ◽  
Author(s):  
Al Nima Amina M ◽  
Al Kotaji Myasar M af ◽  
Khayrallah Ahlam A
Author(s):  
Adel M. Aly ◽  
Ahmed S. Ali

: Glipizide (GZ) is an oral blood-glucose-lowering drug of the sulfonylurea class characterized by its poor aqueous solubility. Aiming for the production of GZ tablets with rapid onset of action followed by prolonged effect; GZ-Polyethylene glycol (PEG 4000 and 6000) solid dispersions with different ratios, (using melting and solvent evaporation method), as well as, coprecipitate containing GZ with polymethyl-methacrylate (PMMA) were prepared. Four tablet formulations were prepared containing; a) GZ alone, b) GZ: PEG6000, 1:10, c) GZ:PMMA 1:3, and, d)both GZ:PEG6000 1:10 and GZ:PMMA 1:3. The solvent evaporation method showed more enhancement of GZ solubility than the melting one, and this solubilizing effect increased with PEG increment. Generally, PEG6000 showed more enhancement of dissolution than PEG4000 especially at 1:10 drug: polymer ratio (the most enhancing formula). Also, the prepared tablet formulations showed acceptable physical properties according to USP/NF requirements. The dissolution results revealed that tablets containing PEG6000 (1:10) have the most rapid release rate, followed by the formula containing both PEG6000 and PMMA, while that including PMMA alone showed the slowest dissolution rate. Moreover, In-vivo studies for each of the above four formulations, were performed using four mice groups. The most effective formula in decreasing the blood glucose level, through the first 6 hours, was that containing GZ and PEG6000, 1:10. However, formula containing the combination of enhanced and sustained GZ was the most effective in decreasing the blood glucose level through 16 hours. Successful in-vitro in-vivo correlations could be detected between the percent released and the percent decreasing of blood glucose level after 0.5 hours.


Author(s):  
Bhikshapathi D. V. R. N. ◽  
Srinivas I

Repaglinide is a pharmaceutical drug used for the treatment of type II diabetes mellitus, it is characterized with poor solubility which limits its absorption and dissolution rate and delays onset of action. In the present study, immediate release solid dispersion of repaglinide was formulated by solvent evaporation technique. Repaglinide solid dispersions were prepared using PEG 8000, Pluronic F 127 and Gelucire 44/14 by solvent evaporation method. A 3-factor, 3-level central composite design employed to study the effect of each independent variable on dependent variables. FTIR studies revealed that no drug excipient interaction takes place. From powder X-ray diffraction (p-XRD) and by scanning electron microscopy (SEM) studies it was evident that polymorphic form of repaglinide has been converted into an amorphous form from crystalline within the solid dispersion formulation. The correlation coefficient showed that the release profile followed Higuchi model anomalous behavior and hence release mechanism was indicative of diffusion. The obtained results suggested that developed solid dispersion by solvent evaporation method might be an efficacious approach for enhancing the solubility and dissolution rate of repaglinide.


1970 ◽  
Vol 3 (2) ◽  
pp. 43-46
Author(s):  
Riaz Uddin ◽  
Farzana Ali ◽  
Subrata Kumar Biswas

Key Words: Solid dispersions; solvent evaporation method; atorvastatin; HPMCDOI: http://dx.doi.org/10.3329/sjps.v3i2.8036 S.J. Pharm. Sci 3(2): 43-46


2018 ◽  
Vol 6 (1) ◽  
pp. 26-34
Author(s):  
Pravin Kumar Sharma ◽  
Pankaj Kumar Sharma ◽  
Gajanan N Darwhekar ◽  
Birendra Shrivastava

Tadalafil is used for the treatment of the erectile dysfunction (ED) and pulmonary arterial hypertension. It is having low aqueous solubility thus it shows poor bioavailability of about 28% by after oral administration. To improve its solubility and dissolution profile solid dispersions (SDPs) of Tadalafil was prepared by physical mixing and solvent evaporation method using polyvinyl pyrollidone-K30 (PVP-30) as a hydrophilic polymeric carrier in different proportions with respect to drug (drug to polymer ratio 1:1 to 1:5). Drug and polymer compatibility studies were performed using FTIR study. The best suitable ratio and method was selected on the basis of enhanced aqueous solubility of drugs. Further selected SDPs were evaluated for various parameters like DSC analysis, percentage yield, percent drug content, saturation solubility, percent drug dissolution and stability studies. FTIR study indicated no incompatibility between Tadalafil and PVP-K30. SDPs prepared with drug to polymer ratio 1:3 and solvent evaporation method was found to be best as they shown significant increased (up to 10 fold) in aqueous solubility in comparison with that of others. DSC study also suggested the depression in the crystalline nature of Tadalafil. Selected SDPs exhibited good stability up to 3 months at 25 ± 2°C /60 ± 5% RH. Based on the results it can be concluded that, SDPs shown remarkable increase in the aqueous solubility and dissolution of Tadalafil and it may improve oral bioavailability of drug as compared with plain drug.


Author(s):  
Sanjesh G. Rathi ◽  
Dhruv B. Chaudhari

The solid dispersions of Bilastine with HPMC, PVP K30 and HPC have been prepared in different weight ratios by using solvent evaporation method. DSC was used to characterize the samples of solid dispersions and pure drug. Drug found compatible with the excipients. The highest improvements in solubility and in-vitro drug release were observed in solid dispersion prepared with HPC (F14) by solvent evaporation method. The increased dissolution rate of drug from solid dispersion may be due to surface tension lowering effect of polymer to the medium and increased wettability and dispersibility of drug. Hence, F14 Solid dispersion with the HPC carrier considered as most satisfactory among all solid dispersions.


2019 ◽  
Vol 11 (1) ◽  
pp. 241 ◽  
Author(s):  
D. Christopher Vimalson ◽  
S. Parimalakrishnan ◽  
N. S. Jeganathan ◽  
S. Anbazhagan

Objective: The present study was aimed to enhance the solubility of poorly water-soluble drug (BCS Class II) Febuxostat using water-soluble polymers.Methods: Pre-formulation studies like drug excipient compatibility studies by Fourier-transform infrared spectroscopyDifferential scanning calorimetry and determination of saturation solubility of drug individually in various media like distilled water and pH 7.4 phosphate buffer. Solid dispersions of Febuxostat was prepared using Polyethylene glycol (PEG 6000) (fusion method) and Polyvinyl pyrrolidone (PVP K30) (solvent evaporation method) in various ratios like 1:1, 1:2, 1:3 and 1:4 separately. The formulated solid dispersions were evaluated for percentage yield, drug content and in vitro dissolution studies.Results: From the results of pre-formulation studies it was revealed that there was no interaction between drug and excipients and the pure drug was poorly soluble in water. The percentage yield of all formulations was in the range of 54-78 %, and drug content was in the range of 43-78 mg. The solid dispersion containing polyvinylpyrrolidone K 30 in 1:4 ratio showed the highest amount of drug release at the end of 30 min than other formulations.Conclusion: Finally it was concluded that solid dispersion prepared with PVP K-30 in 1:4 ratio by solvent evaporation method was more soluble than by fusion method.


Author(s):  
ABHIK KAR ◽  
ABDUL BAQUEE AHMED

Objective: The present study was aimed to enhance the solubility of poorly water soluble drug Ibuprofen using solid dispersion technique and to develop sustained release tablets containing solid dispersion granules of the optimized batch. Ibuprofen is a non-steroidal anti-inflammatory drug (NSAID) with analgesic, antipyretic, and anti-inflammatory propertiesMethods: Solid dispersions of Ibuprofen were prepared by using PEG 20000 and Poloxamer 407 in different weight ratios by fusion and solvent evaporation method. Drug-carrier physical mixtures were also prepared. Solid dispersions were characterized by saturation solubility, drug content, in vitro dissolution, FTIR and DSC analysis. Solid dispersion formulation, SDF9 (PEG 20000 and Poloxamer 407, 1:3:3) prepared by solvent evaporation method was considered as the optimized batch. Sustained release tablets containing the solid dispersion granules of the optimized batch were prepared by direct compression method using HPMC K100M at three concentrations (10%, 14%, 18% w/w). The prepared formulations were evaluated for hardness, thickness, weight variation, friability, in vitro dissolution studies and release kinetics modelling.Results: Solid dispersion formulation, SDF9showed 95.09% drug release in 60 min and considered as the optimized batch. Tablet formulation, FT3 (HPMC K100M 18% w/w) showed 96% drug release for 12 h.Conclusion: Solid dispersions of ibuprofen using a combination of PEG 20000 and poloxamer 407 by solvent evaporation method may result in higher aqueous solubility of the drug. Also sustained release tablets containing solid dispersion granules of ibuprofen, using HPMC K100M may be a promising approach to extend the release rate of the drug from the solid dispersion for 12 h.


2011 ◽  
Vol 236-238 ◽  
pp. 2264-2272
Author(s):  
Guang Fa Wang ◽  
Chun Lan Dai ◽  
Zheng Gen Liao ◽  
Guo Wei Zhao ◽  
Xin Li Liang ◽  
...  

Solid dispersions (SD) were prepared with naringenin and mannitol by the solvent evaporation method with three drying methods (vacuum drying, VD; microwave-vacuum drying, MVD; and spray drying, SPD). The SD was characterized by Differential Scanning Calorimetry (DSC), Powder X-ray Diffractometry (PXRD), Scanning Electronic Microscope (SEM), and Fourier Transform Infrared Spectroscopy (FT-IR).In vitrodissolution of naringenin and physical stability was investigated, and the energy consumption of different processing methods was measured. The results showed that the vitro dissolution rate and extent of naringenin was significantly improved by SD prepared with different drying methods compared to that of the pure drug and physical mixture (PM), and the dissolution rate of SD-SPD and SD-MVD was much higher than the SD-VD. The results of FT-IR showed that naringenin is possibly interacted with mannitol via intermolecular hydrogen bond; The PXRD showed that the crystallinity of the SD prepared with three drying methods was reduced sharply as compared with pure naringenin and PM. There results showed that the physical state of SD-MVD was more stable than SD-SPD and SD-VD that stored in the 40 °C/75% RH chamber in three month. Compared with other drying methods, the MVD method can save time and energy. These results suggest that MVD is feasible to replace the traditional time-consuming and low efficiency drying procedure for preparation of solid dispersions.


Sign in / Sign up

Export Citation Format

Share Document