scholarly journals Effect of Alloying Elements of Mn and Ni on the Pitting Corrosion Resistance of 22Cr Lean Duplex Stainless Steel

2012 ◽  
Vol 16 (5) ◽  
pp. 76-82 ◽  
Author(s):  
Y.S. Ahn ◽  
K.K. Bae
2016 ◽  
Vol 61 (2) ◽  
pp. 771-784 ◽  
Author(s):  
Z. Brytan ◽  
J. Niagaj

Abstract This paper presents results of pitting corrosion resistance of TIG (autogenous and with filler metal) and A-TIG welded lean duplex stainless steel S82441/1.4662 evaluated according to ASTM G48 method, where autogenous TIG welding process was applied using different amounts of heat input and shielding gases like pure Ar and Ar+N2 and Ar+He mixtures. The results of pitting corrosion resistance of the welded joints of lean duplex stainless steel S82441 were studied in as weld conditions and after different mechanical surface finish treatments. The results of the critical pitting temperature (CPT) determined according to ASTM G48 at temperatures of 15, 25 and 35°C were presented. Three different surface treatment after welding were applied: etching, milling, brushing + etching. The influence of post weld surface treatment was studied in respect to the pitting corrosion resistance, basing on CPT temperature. Research on TIG welding of lean duplex stainless steel S82441/1.4662 showed a clear influence of the applied shielding gas mixtures, where the addition of 5 to 15% N2 to Ar virtually no effect on the level of resistance to pitting corrosion, only 5% N2 addition has a positive effect, while use of a mixture of 50% Ar + 50% He compared with welding at 100% Ar atmosphere, can significantly reduce the resistance to pitting corrosion. Definite good results were obtained during TIG welding with the participation of activation flux (A-TIG). The weld surface of lean duplex stainless S82441/1.4662 obtained in A-TIG welding without the addition of filler metal has a much lower tendency to pitting corrosion than traditional welds made by TIG method. Pitting corrosion resistance of welds made by A-TIG improved with the increase of the heat input in the tested range of welding current 100-200 A. It was also found that the intensity of the occurrence of pitting does not affect the method of cleaning welds after welding, but the mechanical removal of a thin surface layer of metal significantly reduces their intensity.


2010 ◽  
Vol 658 ◽  
pp. 380-383 ◽  
Author(s):  
Ying Han ◽  
De Ning Zou ◽  
Wei Zhang ◽  
Jun Hui Yu ◽  
Yuan Yuan Qiao

Specimens of 2507 super-duplex stainless steel aging at 850°C for 5 min, 15 min and 60 min were investigated to evaluate the pitting corrosion resistance in 3.5% NaCl solution at 30°C and 50°C. The results are correlated with the microstructures obtained with different aging time. The precipitation of σ phase remarkably decreases the pitting corrosion resistance of the steel and the specimen aged for 60 min presents the lowest pitting potential at both 30°C and 50°C. With increasing the ambient temperature from 30°C to 50°C, the pitting potential exhibits a reduction tendency, while this tendency is less obviously in enhancing the ambient temperature than in extending the isothermal aging duration from 5 to 60 min. SEM analysis shows that the surrounding regions of σ phase are the preferable sites for the formation of corrosion pits which grew up subsequently. This may be attributed to the lower content of corrosion resistance elements in these regions formatted with σ phase precipitation.


Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 294
Author(s):  
Shuang Liu ◽  
Chaohua Yue ◽  
Xi Chen ◽  
Qiuhua Zhu ◽  
Yiyou Tu

The pitting corrosion resistance of S32750 super duplex stainless steel, annealing treated at temperatures of 950–1200 °C for 20–60 min, was investigated using potentiodynamic polarization tests. The results show that the volume fractions of ferrite in the S32750 duplex stainless steel increased from 48.9% to 68.4% as annealing temperatures increased from 950 to 1200 °C. The pitting potential of the sample increased first and then decreased from an annealing temperature of 950 to 1050 °C, and the highest pitting potential was observed after annealing at 1050 °C for 35 min. The pitting corrosion resistance of S32750 stainless steel is due to the combination of pitting resistance equivalent number (PREN) value, phase fraction and grain boundary area fraction, and the imbalance of corrosion potential.


Sign in / Sign up

Export Citation Format

Share Document