scholarly journals Development & Validation of RP-HPLC Method for the Estimation of Doravirine in Bulk and Pharmaceutical Dosage Form

Author(s):  
A. Suneetha ◽  
G. I. Priyadarshini ◽  
V. Mounika ◽  
G. Aparna

A simple, accurate, rapid and precise isocratic reversed phase high-performance liquid chromatographic method has been developed and validated for determination of Doravirine in tablets. The chromatographic separation was carried out on Dionex C18 (250 x 4.6mm, 5µ) with a mixture of methanol: 0.05M potassium dihydrogen phosphate (40:60%v/v) as a mobile phase at a flow rate of 1.5 mL/min. UV detection was performed at 306 nm. The retention time was 5.24 min for Doravirine. Calibration plot was linear (r2=0.999) over the concentration range of 200-600 µg/mL. The method was validated for accuracy, precision, specificity, linearity, robustness, LOD and LOQ. The proposed method was successfully used for quantitative analysis of tablets. No interference from any component of pharmaceutical dosage form was observed. Validation studies revealed that method is specific, rapid, reliable, and reproducible. The high recovery and low relative standard deviation confirm the suitability of the method for routine determination of Doravirine in bulk and tablet dosage form.

2010 ◽  
Vol 7 (1) ◽  
pp. 198-202 ◽  
Author(s):  
R. Shinde Sachin ◽  
I. Bhoir Suvarna ◽  
S. Pawar Namdev ◽  
B.Yadav Suman ◽  
M. Bhagwat Ashok

A Simple, fast and precise reversed phase high performance liquid chromatographic method is developed for the simultaneous determination of satranidazole and ofloxacin. Chromatographic separation of these drugs were performed on Kromasil C18column (250 x 4.6 mm, 5 µ) as stationary phase with a mobile phase comprising of 20 mM potassium dihydrogen phosphate: acetonitrile in the ratio of 60:40 (v/v) containing 0.1% glacial acetic acid at a flow rate of 1 mL/min and UV detection at 318 nm. The linearity of satranidazole and ofloxacin were in the range of 1.5 to 3.6 µg/mL and 1.0 to 2.4 µg/mL respectively. The recovery was calculated by standard addition method. The average recovery was found to be 100.63% and 100.02% for satranidazole and ofloxacin respectively. The proposed method was found to be accurate, precise and rapid for simultaneous determination of satranidazole and ofloxacin


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Usmangani K. Chhalotiya ◽  
Kashyap K. Bhatt ◽  
Dimal A. Shah ◽  
Gautam R. Chauhan ◽  
Sunil L. Baldania

A simple, specific and stability-indicating reversed-phase high-performance liquid chromatographic method was developed for the simultaneous determination of melitracen hydrochloride and flupentixol dihydrochloride in tablet dosage form. A Brownlee C-18, 5 μm column having 250×4.6 mm i.d. in isocratic mode, with mobile phase containing 0.025 M potassium dihydrogen phosphate: methanol (10 : 90, v/v; pH 7.3) was used. The flow rate was 1.0 mL/min, and effluents were monitored at 230 nm. The retention times of melitracen hydrochloride and flupentixol dihydrochloride were 7.75 min and 5.50 min, respectively. The linearity for melitracen hydrochloride and flupentixol dihydrochloride were in the range of 0.5–60 μg/mL. The recoveries obtained for melitracen hydrochloride and flupenthixol dihydrochloride was 99.81–100.77% and 99.42–100.12%, respectively. Both the drugs were subjected to acid and alkali hydrolysis, chemical oxidation, and dry heat degradation and photodegradation. The proposed method was validated and successfully applied to the estimation of melitracen hydrochloride and flupentixol dihydrochloride in combined tablet dosage form.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Gurinder Singh ◽  
Roopa S. Pai

A rapid reversed-phase high performance liquid chromatography (RP-HPLC) method was developed for the determination of trans-resveratrol (t-RVT) in PLGA nanoparticle formulation. A new formulation of t-RVT loaded PLGA nanoparticles (NPs) with potential stealth properties was prepared by nanoprecipitation method in our laboratory. The desired chromatographic separation was achieved on a Phenomenex C18 column under isocratic conditions using UV detection at 306 nm. The optimized mobile phase consisted of a mixture of methanol: 10 mM potassium dihydrogen phosphate buffer (pH 6.8): acetonitrile (63 : 30 : 7, v/v/v) at a flow rate of 1 mL/min. The linear regression analysis for the calibration curves showed a good linear correlation over the concentration range of 0.025–2.0 μg/ml, with determination coefficients, R2, exceeding 0.9997. The method was shown to be specific, precise at the intraday and interday levels, as reflected by the relative standard deviation (RSD) values, lower than 5.0%, and accurate with bias not exceeding 15% and percentage recovery was found to be in the range between 94.5 and 101.2. The limits of detection and quantification were 0.002 and 0.007 μg/ml, respectively. The method was successfully applied for the determination of t-RVT encapsulation efficiency.


2009 ◽  
Vol 6 (1) ◽  
pp. 289-294 ◽  
Author(s):  
Uttam D. Pawar ◽  
Abhijit V. Naik ◽  
Aruna V. Sulebhavikar ◽  
Tirumal A. Datar ◽  
Kiran. V. Mangaonkar

A simple, fast and precise reversed phase high performance liquid chromatographic method is developed for the simultaneous determination of aceclofenac, paracetamol and chlorzoxazone. Chromatographic separation of the three drugs was performed on an Intersil C18column (250 mm × 4.6 mm, 5µm) as stationary phase with a mobile phase comprising of 10 mM potassium dihydrogen phosphate (pH adjusted to 5.55 with ammonia): acetonitrile in the ratio 60:40 (v/v) at a flow rate of 1.0 mL/min and UV detection at 205 nm. The linearity of aceclofenac, paracetamol and chlorzoxazone were in the range of 5.00-15.00 µg/µL, 25.00-75.00 µg/µL and 25.00-75.00 µg/µL respectively. The limit of detection for aceclofenac, paracetamol and chlorzoxazone was found to be 18.0 ng/mL, 22.0 ng/mL and 9.0 ng/mL respectively whereas, the limit of quantification was found to be 55 ng/mL, 65 ng/mL and 27.0 ng/mL respectively. The recovery was calculated by standard addition method. The average recovery was found to be 99.04%, 99.57% and 101.63% for aceclofenac, paracetamol and chlorzoxazone respectively. The proposed method was found to be accurate, precise and rapid for the simultaneous determination of aceclofenac, paracetamol and chlorzoxazone


INDIAN DRUGS ◽  
2012 ◽  
Vol 49 (12) ◽  
pp. 51-55
Author(s):  
S Kathirvel ◽  
◽  
K. Madhu Babu

Described in this manuscript is the first reported new, simple high performance thin layer chromatographic method for the determination of tapentadol hydrochloride in bulk and its tablet dosage form. The drug was separated on aluminum plates precoated with silica gel 60 F254 with butanol: water: glacial acetic acid in the ratio of 6:2:2 (v/v/v) as mobile phase. Quantitative analysis was performed by densitometric scanning at 254 nm. The method was validated for linearity, accuracy, precision and robustness. The calibration plot was linear over the range of 200-600 ng band -1 for tapentadol hydrochloride. The method was successfully applied to the analysis of drug in a pharmaceutical dosage form.


2012 ◽  
Vol 1 (12) ◽  
pp. 410-413 ◽  
Author(s):  
Sukhbir Lal Khokra ◽  
Balram Choudhary ◽  
Heena Mehta

A rapid, simple and highly sensitive reversed phase high performance liquid chromatographic (RP-HPLC) method has been developed for the quantitative determination of Rabeprazole sodium and Aceclofenac in a combined dosage form. Rabeprazole sodium and Aceclofenac were chromatographed using C-18 column as stationary phase and methanol: acetonitrile: water (60 : 10 : 30 v/v/v) as the mobile phase at a flow rate of 1.0 ml/min at ambient temperature and detected at 280 nm. The retention time (RT) of Rabeprazole sodium and Aceclofenac were found to be 5.611 min and 2.102 minute, respectively. The linearities of Rabeprazole sodium and Aceclofenac were in the range of 1-10 µg/ml and 3-15 µg/ml, respectively. The limit of detection was found to be 0.091 µg/ml for Rabeprazole sodium and 0.043 µg/ml for Aceclofenac. The proposed method was applied for the determination of Rabeprazole sodium and Aceclofenac in a combined dosage form and result was found satisfactory.DOI: http://dx.doi.org/10.3329/icpj.v1i12.12450 International Current Pharmaceutical Journal 2012, 1(12): 410-413


2008 ◽  
Vol 91 (4) ◽  
pp. 739-743 ◽  
Author(s):  
Andréia de Haro Moreno ◽  
Hérida Regina Nunes Salgado

Abstract A rapid, accurate, and sensitive high-performance liquid chromatographic (HPLC) method was developed and validated for the determination of ceftazidime in pharmaceuticals. The method validation parameters yielded good results and included range, linearity, precision, accuracy, specificity, and recovery. The excipients in the commercial powder for injection did not interfere with the assay. Reversed-phase chromatography was used for the HPLC separation on a Waters C18 (WAT 054275; Milford, MA) column with methanolwater (70 + 30, v/v) as the mobile phase pumped isocratically at a flow rate of 1.0 mL/min. The effluent was monitored at 245 nm. The calibration graph for ceftazidime was linear from 50.0 to 300.0 g/mL. The values for interday and intraday precision (relative standard deviation) were <1. The results obtained by the HPLC method were calculated statistically by analysis of variance. We concluded that the HPLC method is satisfactory for the determination of ceftazidime in the raw material and pharmaceuticals.


2013 ◽  
Vol 9 (2) ◽  
pp. 26-29 ◽  
Author(s):  
AK Hemanth Kumar ◽  
V Sudha ◽  
Geetha Ramachandran

A high performance liquid chromatographic method for determination of rifabutin in human plasma was  developed. The method involved deproteinisation of the sample with acetonitrile and analysis of the  supernatant using a reversed-phase C18 column (250mm) and UV detection at a wavelength of 265nm.  The assay was specific for rifabutin and linear from 0.025 to 10.0μg/ml. The relative standard deviation  of intra- and inter-day assays was lower than 10%. The method was able to remove interfering materials  in plasma, yielding an average recovery of rifabutin from plasma of 101%. Due to its simplicity, the assay  can be used for pharmacokinetic studies of rifabutin. SAARC Journal of Tuberculosis, Lung Diseases & HIV/AIDS; 2012; IX(2) 26-29 DOI: http://dx.doi.org/10.3126/saarctb.v9i2.7975


2018 ◽  
Vol 17 (1) ◽  
pp. 123-129
Author(s):  
Sharifa Sultana ◽  
Md Shahadat Hossain ◽  
Md Samiul Islam ◽  
Abu Shara Shamsur Rouf

A novel reversed phase ultra-high performance liquid chromatographic (RP-UHPLC) method was developed for the estimation of sitagliptin in pharmaceutical dosage form. Separation was done by a X-bridge C18 column (4.6 i.d.× 150 mm, 5 μm particle size) with a flow rate of 1 ml/min using phosphate buffer (pH 6) and acetonitrile (70:30, v/v) as mobile phase at 268 nm using photodiode array plus (PDA+) detector. The retention time was found at 4.607 min. The developed method was validated as per the requirements of ICH-Q2B guidelines for specificity, system suitability, linearity, precision, accuracy, sensitivity and robustness. The linear regression analysis data for the linearity plot showed correlation coefficient values of 0.999 with LOD value of 0.06 μg/ml and LOQ of 0.225 μg/ml. The relative standard deviation (%RSD) for inter-day and intra- day precision was not more than 2.0%. The method was found to be accurate with percentages recovery of 98.50±0.03 to 99.70±0.05 and the % RSD was less than 2. The results showed that the proposed method is highly convenient for routine analysis of sitagliptin.Dhaka Univ. J. Pharm. Sci. 17(1): 123-129, 2018 (June)


Sign in / Sign up

Export Citation Format

Share Document