scholarly journals The Use of Homegarden Agroforestry Systems for Climate Change Mitigation in Lowlands of Southern Tigray, Northern Ethiopia

2019 ◽  
pp. 1-13
Author(s):  
Gebru Eyasu Siyum ◽  
Tuemay Tassew

Mitigation of climate change is one of the major environmental challenges facing the globe. In this context, homegarden agroforestry systems (HGAFs) have large potential for climate change mitigation. Therefore, this study was initiated to estimate the biomass and soil carbon stocks of HGAFs in relation to adjacent Natural Forest (NF). It also analyzed the relationship between woody species diversity, evenness and richness with biomass and soil carbon stocks. Three sites were purposely selected on the basis of the presence of HGAFs and NF adjacent to each other. Random sampling was used to select representative homegardens from the study population. In NF, a systematic sampling technique was employed. A total of 60 plots with a size of 10 m x 20 m were used to collect vegetation and soil data in both land uses. Soil samples were collected from each plot of the samples laid for vegetation sampling. Accordingly, 120 composite and 120 undisturbed soil samples from 0-30 cm and 30-60 cm soil depths were collected for soil organic carbon (SOC) and bulk density analysis respectively. Biomass estimation for each woody species was analyzed by using appropriate allometric equations. The result showed that the total amount of carbon stocks was 148.32±35.76 tons ha-1 and 157.27±51.61 tons ha-1 in HGAFs and adjacent NF respectively which did not vary significantly between the two studied land uses (P > 0.05). The finding also shows a positive but non-significant (P>0.05) relationship between carbon stocks and woody species diversity, richness, and evenness. Specifically, in NF lands, woody species diversity with SOC (r=0.36) and in HGAFs species richness with biomass carbon (r=0.39) was correlated positively and significantly (P=0.05). We concluded that HGAFs have the same potential as the NF for carbon stock accumulation and to counteract the loss of biomass.

2019 ◽  
Author(s):  
Ashenafi Manaye ◽  
Berihu Tesfamariam ◽  
Musse Tesfaye ◽  
Adefires Werku ◽  
Yirga Gufi

Abstract Background : Agroforestry (AF) is an age-old practice in the farming system of Ethiopian dry lands. So far, several studies conducted in the field of AF focused on system design, soil fertility management and system interactions. Less emphasis has been given to the biodiversity and climate change mitigation aspects. The objective of this paper was to evaluate the woody species diversity, biomass carbon (C) and soil organic carbon (SOC) stock of the dry land indigenous AF practices. A total of 197 smallholder farmers representing four AF practices were systematically selected from three agroecologies. Woody species inventory was done on the randomly established plot of each farm. Results : A total of 59 species, belonging to 48 genera and 32 families were recorded. Shannon diversity index (H’) of highland agroecology was higher in-home garden AF while in the midland and lowland the higher H’ was recorded in parkland AF. Smallholding ecosystem C stocks (sum of total biomass C and SOC 0 –60 cm) ranged from 77 to 135 Mg ha−1.The mean total biomass C stock of woodlot AF practice (31 Mg C ha-1) was significantly higher than the other three AF practices. SOC stocks (0–60 cm) were greater in boundary planting (113 Mg C ha-1) followed by the home garden (109 Mg C ha-1) and woodlot (97 Mg C ha-1) AF practices. Conclusions : The woody species diversity of highland agroecology was higher in-home garden AF while in the midland and lowland the higher species diversity was recorded in parkland AF. As compared to other AF systems, our study revealed that rotational woodlot and boundary planting AF practice accounts higher biomass and SOC stock, respectively. Finally, our work concluded that indigenous AF system is a win-win solution to address the biodiversity conservation and climate change mitigation of the dryland ecosystem.


2013 ◽  
Vol 110 (11) ◽  
pp. E985-E985 ◽  
Author(s):  
Andreas Gattinger ◽  
Adrian Muller ◽  
Matthias Haeni ◽  
Colin Skinner ◽  
Andreas Fließbach ◽  
...  

Author(s):  
Kurniatun Hairiah

Maintaining and where feasible restoring soil carbon stocks is part of all sustainable development strategies that have a chance of meeting the global commitment of the Paris Agreement to contain global warming within a 1.5<sup>o</sup>C limit. Active policies to incentivize increased soil carbon storage require under­standing of the drivers of soil carbon decline, as well as the conditions under which soil management leads to an increase. Soil carbon transitions -- shifts from decline to increase of soil carbon stocks -- have been recorded as part of agricultural intensification. Organic inputs supporting soil carbon may primarily depend on roots, rather than aboveground inputs, and thus on the choice of crops, trees, and grasses that make up an agricultural land use system.


2022 ◽  
Vol 9 (2) ◽  
pp. 3387-3396
Author(s):  
Diriba Megersa Soboka ◽  
Fantaw Yimer

This study was conducted to estimate carbon stock enhancement and climate change mitigation potential of restoration effort in Rebu Watershed, Woliso Woreda, Ethiopia. Two restored lands of thirteen years old were randomly selected from two kebeles. Biomass and soil data were collected systematically from nested plots. Mensuration of woody species, soil, and grass/litter samples was collected from the subplots of the nested plots. A total of 72 composite soil samples were collected. The results showed the positive impact of restoration activity on enhancing biomass and soil organic carbon stocks. The restored land ecosystem had shown higher carbon stock of (138.51 ± 27.34 t/ha) than the adjacent unrestored land ecosystem (101.43 ± 21.25 t/ha), which confirmed the potential of restoration in enhancing the carbon stock and mitigating climate change. Hence, the restored land use type has been stored about 8.37 t/ha of carbon dioxide equivalent (CO2e) in biomasses. The restored land use type has mitigated climate change (absorb CO2) by 7.7 times than the adjacent unrestored land use type in this study. The significant values in restored land use types were due to the enhanced vegetation and land cover, which contributed to the biomass and soil organic carbon accumulation. Moreover, the lower values in unrestored land use type were due to the continuous degradation and disturbance from livestock and human beings. Therefore, the result of this study showed that protecting the degraded lands from any disturbance could enhance the carbon stocks of the ecosystem and mitigate the carbon emission rate.


2020 ◽  
Author(s):  
Georgia de Jong Cleyndert ◽  
Aida Cuni-Sanchez ◽  
Hamidu A Seki ◽  
Deo D Shirima ◽  
Pantaleo K.T. Munishi ◽  
...  

Abstract Background: Mangrove forests have gained recognition for their potential role in climate change mitigation due to carbon sequestration in live trees, and carbon storage in the sediments trapped by mangrove tree roots and pneumatophores. Africa hosts about 19% of the world’s mangroves, yet relatively few studies have examined the carbon stocks of African mangroves. The available studies report considerable differences among sites and amongst the different pools of carbon stocks. None considered the effects of seaward distance. We present details of AGC and SOC carbon stocks for Lindi in Tanzania, and focus on how these values differ with increasing seaward distance and, how our results compare to those reported elsewhere across Africa.Results: AGC ranged between 11-55Mg C ha-1, but was not significantly affected by seaward distance. SOC for 0-1m depth ranged from 154-484, with a mean of 302 Mg C ha-1. SOC was significantly negatively correlated with seaward distance. Mangrove type (estuarine/oceanic), soil erosion, soil depth may explain these differences We note important methodological differences in previous studies on carbon stocks in mangroves in Africa. Conclusion:This study indicates that seaward distance has an important effect on SOC stocks in the Lindi region of Tanzania. SOC should be fully incorporated into national climate change mitigation policies. Studies should report seaward distance and to describe the type of mangrove stand to make results easily comparable across sites and to assess the true value of Blue Carbon in Africa. We recommend focusing on trees >10cm diameter for AGC, and sampling soils to at least 1m depth for SOC, which would provide a more complete assessment of the potentially considerable mangrove carbon store.


Sign in / Sign up

Export Citation Format

Share Document