mangrove tree
Recently Published Documents


TOTAL DOCUMENTS

194
(FIVE YEARS 68)

H-INDEX

23
(FIVE YEARS 3)

2022 ◽  
Vol 82 ◽  
Author(s):  
G. Boehs ◽  
L. A. de Freitas

Abstract Littoraria angulifera (Lamarck, 1822) is an estuarine gastropod of tropical occurrence, which lives mainly on trunks of mangrove tree species. This study aimed to evaluate the population attributes of this species, such as abundance, space-time distribution, sex ratio and recruitment in mangroves in Bahia State, northeastern Brazil. The specimens were collected monthly throughout 2018, on trunks of the red mangrove Rhizophora mangle L. at two heights and on two horizontal levels. Specimens that were on the marine grass Spartina alterniflora Loisel were also collected. After counting, biometrics and sexing, the specimens were returned alive to the environment. The average size and weight of L. angulifera was higher (p<0.05) in places with taller and less sparse trees and the vertical distribution on the trunks showed a preference for strata close to the soil. Both results are related to shading and protection against desiccation. Females were more abundant than males, at an approximate sex ratio F: M of 1.4: 1. Recruits were observed throughout the period, showing continuous reproduction of the species with a recruitment peak in spring (September to November). The study revealed the importance of keep the mangroves intact to allow the maintenance of the natural stocks of the species.


2021 ◽  
Vol 9 (3) ◽  
pp. 202-216
Author(s):  
Dewi Kresnasari ◽  
◽  
Arbi Mei Gitarama ◽  

In coastal areas, mangrove communities have many functions economically, physically, and ecologically. One of the mangrove forest areas that is experiencing rapid decline in area is the Segara Anakan Lagoon, Cilacap. The purpose of this study was to determine the structure and composition of mangrove vegetation. Vegetation data was collected by purposive sampling method and each station was made 9 sampling plots. The results found that there are 12 species consisting of 4 major mangrove families, 1 minor mangrove family and 2 associated mangrove families. In general, the mangrove tree vegetation in the eastern part of Segara Anakan is dominated by Aegiceras corniculatum with an INP ranging from 38.99-67.23%, the middle part is dominated by Nypa fruticans with an INP ranging from 47.80-70.18% and the western part is dominated by Sonneratia alba with an INP of 56.32%. Environmental quality measures include water temperature, salinity, dissolved oxygen, soil pH, water pH, TSS, total soil N, organic C, soil phosphate still support mangrove life.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7332
Author(s):  
Miguel David Marfil-Santana ◽  
Anahí Martínez-Cárdenas ◽  
Analuisa Ruíz-Hernández ◽  
Mario Vidal-Torres ◽  
Norma Angélica Márquez-Velázquez ◽  
...  

Mangrove sediment ecosystems in the coastal areas of the Yucatan peninsula are unique environments, influenced by their karstic origin and connection with the world’s largest underground river. The microbial communities residing in these sediments are influenced by the presence of mangrove roots and the trading chemistry for communication between sediment bacteria and plant roots can be targeted for secondary metabolite research. To explore the secondary metabolite production potential of microbial community members in mangrove sediments at the “El Palmar” natural reserve in Sisal, Yucatan, a combined meta-omics approach was applied. The effects of a cultivation medium reported to select for actinomycetes within mangrove sediments’ microbial communities was also analyzed. The metabolome of the microbial communities was analyzed by high-resolution liquid chromatography-tandem mass spectrometry, and molecular networking analysis was used to investigate if known natural products and their variants were present. Metagenomic results suggest that the sediments from “El Palmar” harbor a stable bacterial community independently of their distance from mangrove tree roots. An unexpected decrease in the observed abundance of actinomycetes present in the communities occurred when an antibiotic-amended medium considered to be actinomycete-selective was applied for a 30-day period. However, the use of this antibiotic-amended medium also enhanced production of secondary metabolites within the microbial community present relative to the water control, suggesting the treatment selected for antibiotic-resistant bacteria capable of producing a higher number of secondary metabolites. Secondary metabolite mining of “El Palmar” microbial community metagenomes identified polyketide synthase and non-ribosomal peptide synthetases’ biosynthetic genes in all analyzed metagenomes. The presence of these genes correlated with the annotation of several secondary metabolites from the Global Natural Product Social Molecular Networking database. These results highlight the biotechnological potential of the microbial communities from “El Palmar”, and show the impact selective media had on the composition of communities of actinobacteria.


2021 ◽  
Vol 944 (1) ◽  
pp. 012039
Author(s):  
B Prayudha ◽  
V Siregar ◽  
Y I Ulumuddin ◽  
Suyadi ◽  
L B Prasetyo ◽  
...  

Abstract The only place for estuarine-mangroves in Java Island, Segara Anakan Lagoon, experiences the vast decline of mangrove cover. Satellite remote sensing has a critical role in monitoring that change as it allows to record vast areas over time. However, most studies tend to utilize satellite data to investigate the change of mangrove areas into other land-use types rather than identify the mangrove community’s shifting. This study utilized the mangrove vegetation index (MVI) for monitoring the changes of mangrove communities at the life-form level using satellite data. The study used multi-temporal Landsat images as it has historical systematic archive data. The threshold value of the index for each class is defined by referring to the field data. The class referred to the life-form classification consisting of mangrove trees, Nypa, and understorey. The image analysis was conducted using Google Earth Engine (GEE), while R software was used for determining threshold values through statistical analysis. The result shows that the MVI can differentiate between some life forms of mangroves, with the overall accuracy reaching 78.79% and a kappa coefficient of 0.729. Further, the multi-temporal maps showed the decline of mangrove tree areas, which the understorey and Nypa community have replaced.


2021 ◽  
Vol 22 (21) ◽  
pp. 11964
Author(s):  
Matin Miryeganeh ◽  
Hidetoshi Saze

Mangroves are salt-tolerant plant species that grow in coastal saline water and are adapted to harsh environmental conditions. In this study, we de novo assembled and functionally annotated the transcriptome of Rhizophora stylosa, the widely distributed mangrove from the largest mangrove family (Rhizophoraceae). The final transcriptome consists of 200,491 unigenes with an average length, and N50 of 912.7 and 1334 base pair, respectively. We then compared the genome-wide expression profiles between the two morphologically distinct natural populations of this species growing under different levels of salinity depending on their distance from the ocean. Among the 200,491 unigenes, 40,253 were identified as differentially expressed between the two populations, while 15,741 and 24,512 were up- and down-regulated, respectively. Functional annotation assigned thousands of upregulated genes in saline environment to the categories related to abiotic stresses such as response to salt-, osmotic-, and oxidative-stress. Validation of those genes may contribute to a better understanding of adaptation in mangroves species. This study reported, for the first time, the transcriptome of R. stylosa, and the dynamic of it in response to salt stress and provided a valuable resource for elucidation of the molecular mechanism underlying the salt stress response in mangroves and other plants that live under stress.


2021 ◽  
Vol 891 (1) ◽  
pp. 012005
Author(s):  
A Nuryawan ◽  
R S Syahputra ◽  
I Azhar ◽  
I Risnasari

Abstract In order to sustain mangrove forests, only branches part of the mangrove trees have been utilized. In this context, these parts have been used as the raw material of wood pellets and briquettes. These solid biofuels are produced by compressing pulverized woody biomass with or without additives in cubic-form or cylindrical units. In this study, five predominant mangrove trees, namely Avicennia marina, Bruguiera sexangula, Excoecaria agallocha, Rhizopora apiculata, and R. mucronata, have been harvested their branches. Wood with and without bark derived from branches has been investigated for their fundamental properties, namely percentage of bark, ash-content, and physical properties (moisture content, density, and specific gravity). These properties will determine the quality class of the resulted wood pellets and briquettes considering pre-treatment or the nature of the branches’ wood.


Forests ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1403
Author(s):  
Sin-He Pan ◽  
Chuan-Wen Ho ◽  
Chiao-Wen Lin ◽  
Shou-Chung Huang ◽  
Hsing-Juh Lin

The mass planting of mangroves has been proposed as a mitigation strategy to compensate for mangrove loss. However, the effects of mangrove vegetation on the abundance and community composition of macrobenthos remain controversial. The macrobenthic communities in four intact mangrove forests with different conditions and the adjacent nonvegetated mudflats of two mangrove species with distinct stand structures on the western coast of Taiwan were examined. Some macrobenthic taxa occurred only in the mangroves, suggesting macrobenthic critical habitats. Seasonal shift in community composition was more pronounced in the mudflats than in the mangroves, possibly due to the rich food supply, low temperature, and shelter function provided by mangrove forests. However, crab density was always lower in the mangroves than in the mudflats. There was a negative relationship between the stem density of Kandelia obovata (S., L.) and infaunal density. The pneumatophore density of Avicennia marina (Forsk.) correlated negatively with epifaunal density. Our results show that the response of macrobenthic abundance and community composition to mangrove vegetation was inconsistent. We reason that mangroves are critical habitats for the macrobenthos in the mudflats. However, if mangrove tree density is high, we predict that the macrobenthic density will decrease. This suggests that at some intermediate level of mangrove tree density, where there are enough mangrove trees to harbor a macrobenthic community but not enough trees to significantly reduce this density, mangroves management can be optimally achieved to promote the presence of a diverse and dense macrobenthic community.


2021 ◽  
Vol 4 ◽  
Author(s):  
Gustavo A. Castellanos-Galindo ◽  
Elisa Casella ◽  
Hector Tavera ◽  
Luis Alonso Zapata Padilla ◽  
Marc Simard

The Panama Bight eco-region along the Pacific coast of central and South America is considered to have one of the best-preserved mangrove ecosystems in the American continent. The regional climate, with rainfall easily reaching 5–8 m every year and weak wind conditions, contribute to the exceptionally tall mangroves along the southern Colombian and northern Ecuadorian Pacific coasts (Nariño Department and Esmeraldas Province areas). Here we evaluate the use of different methods (ground-based measurements, drone imagery and radar data [Shuttle Radar Topography mission-SRTM and TanDEM-X]) to characterize the structure of the tallest of these forests. In November 2019, three mangrove sites with canopy heights between 50 and 60 m, previously identified with SRTM data, were sampled close to the town of Guapi, Colombia. In addition to in situ field measurements of trees, we conducted airborne drone surveys in order to generate georeferenced orthomosaics and digital surface models (DSMs). We found that the extensive mangrove forests in this area of the Colombian Pacific are almost entirely composed of Rhizophora spp. trees. The tallest mangrove tree measured in the three plots was 57 m. With ca. 900 drone photographs, three orthomosaics (2 cm pixel–1 resolution) and digital surface models (3.5 cm pixel–1) with average area of 4,0 ha were generated. The field-measured canopy heights were used to validate the drone-derived and radar-derived data, confirming these mangrove forests as the tallest in the Americas. The drone-derived orthomosaics showed significant patches of the Golden Leather Fern, Acrostichum aureum, an opportunistic species that can be associated to mangrove degradation, indicating that the mangrove forests investigated here may be threatened from increased selective logging requiring improvements and effective implementation of the current mangrove management plans in Colombia. The techniques used here are highly complementary and may represent the three tiers for carbon reporting, whereby the drone-derived canopy height maps, calibrated with local in situ measurements, provides cheap but reliable Tier 3 estimates of carbon stocks at the project level.


2021 ◽  
Vol 22 (18) ◽  
pp. 9874
Author(s):  
Matin Miryeganeh ◽  
Hidetoshi Saze

Their high adaptability to difficult coastal conditions makes mangrove trees a valuable resource and an interesting model system for understanding the molecular mechanisms underlying stress tolerance and adaptation of plants to the stressful environmental conditions. In this study, we used RNA sequencing (RNA-Seq) for de novo assembling and characterizing the Bruguiera gymnorhiza (L.) Lamk leaf transcriptome. B. gymnorhiza is one of the most widely distributed mangrove species from the biggest family of mangroves; Rhizophoraceae. The de novo assembly was followed by functional annotations and identification of individual transcripts and gene families that are involved in abiotic stress response. We then compared the genome-wide expression profiles between two populations of B. gymnorhiza, growing under different levels of stress, in their natural habitats. One population living in high salinity environment, in the shore of the Pacific Ocean- Japan, and the other population living about one kilometre farther from the ocean, and next to the estuary of a river; in less saline and more brackish condition. Many genes involved in response to salt and osmotic stress, showed elevated expression levels in trees growing next to the ocean in high salinity condition. Validation of these genes may contribute to future salt-resistance research in mangroves and other woody plants. Furthermore, the sequences and transcriptome data provided in this study are valuable scientific resources for future comparative transcriptome research in plants growing under stressful conditions.


Sign in / Sign up

Export Citation Format

Share Document