Kinetic Study and Model Development for Cumulative Biogas Production from Cattle Dung

Author(s):  
Manjula Das Ghatak ◽  
P. Mahanta
2015 ◽  
Vol 4 (2) ◽  
pp. 165 ◽  
Author(s):  
Mahsa Madani Hosseini ◽  
Catherine N. Mulligan ◽  
Suzelle Barrington

<p class="emsd">In-Storage-Psychrophilic-Anaerobic-Digestion (ISPAD) is a treatment system applicable to wastewaters stored for over 100 days, such as livestock wastes and municipal sludge. The ISPAD system differs from conventional reactors by being a sequentially fed batch process operating at a temperature fluctuating with ambient. The objective of this study was to develop a mathematical model to simulate the ISPAD process, verify the value of its microbial kinetics, and to simulate the pH evolution of its content along with its methane (CH<sub>4</sub>) production. Furthermore, the values of the ISPAD microbial kinetics were compared to that of previous years to track for further acclimation to psychrophilic conditions. Simulation of ISPAD was achieved using the Simulink/Matlab software. The model was calibrated using laboratory data obtained from batch experiments using 7-year-old ISPAD inoculum, and glucose as substrate, and where glucose, VFAs and pH changes were monitored along with biogas production. The ISPAD model showed good agreement with the experimental data representing the system behaviour between 4 and 35 ºC. Although microbial activity at 4 °C was much slower than that at 18 and 35 ºC, it showed acclimation to low temperatures. Furthermore, comparison of microbial kinetic values over 3 years of field ISPAD monitoring demonstrated continued population acclimation, especially for the methanogens.</p>


2016 ◽  
Vol 6 (4) ◽  
pp. 175 ◽  
Author(s):  
Akinola David Olugbemide ◽  
Labunmi Lajide ◽  
Albert Adebayo ◽  
Bodunde Joseph Owolabi

2010 ◽  
Vol 34 (9) ◽  
pp. 1278-1282 ◽  
Author(s):  
Shanta Satyanarayan ◽  
Ramakant ◽  
Shivayogi

Author(s):  
Gautham P. Jeppu ◽  
Jayalal Janardhan ◽  
Shivakumara Kaup ◽  
Anish Janardhanan ◽  
Shakeib Mohammed ◽  
...  

AbstractBiomass from various sources such as cow dung is a significant source of renewable energy (as biogas) in many regions globally, especially in India, Africa, Brazil, and China. However, biogas production from biomass such as cattle dung is a slow, inefficient biochemical process, and the specific biogas produced per kg of biomass is relatively small. The improvement of specific biogas production efficiency using various dilution ratios (and, hence, total solids [TS]) is investigated in this work. A wide range of feed dilution (FD) ratios of cow dung: water (CD: W) was tested in batch biogas digesters with total solids ranging from 1% to 12.5% and FD ratio ranging from 2:1 to 1:20. To further verify the results from the above batch experiments, semi-batch experiments representative of field-scale biodigesters were conducted. Semi-batch reactors have a steady-state process, unlike batch reactors, which have an unsteady state process. Our results suggested that specific biogas production (mL/g VS) increased continuously when the total solids decreased from 12.5% to 1% (or when dilution increased). Our experiments also indicate that the commonly used 1:1 feed dilution ratio (TS ~ 10% for cow dung) does not produce the maximum specific biogas production. The possible reason for this could be that anaerobic digestion at higher total solids is rate limited due to substrate inhibition, mass transfer limitations, and viscous mixing problems that arise at higher total solids concentration. Hence, a higher feed dilution ratio between 1:2 and 1:4 (TS between 4 and 6.7%) is recommended for a more efficient biomass utilization of cowdung. Empirical relationships were also developed for variation of specific biogas yield with the total solids content of the cow dung slurry. Graphic abstract


Author(s):  
Raveena Kargwal ◽  
Yad vika ◽  
M.K. Garg ◽  
Kamla Malik ◽  
Shikha Mehta

Sign in / Sign up

Export Citation Format

Share Document