scholarly journals In-Storage-Psychrophilic-Anaerobic-Digestion (ISPAD) process. Part I: Model Development and Calibration

2015 ◽  
Vol 4 (2) ◽  
pp. 165 ◽  
Author(s):  
Mahsa Madani Hosseini ◽  
Catherine N. Mulligan ◽  
Suzelle Barrington

<p class="emsd">In-Storage-Psychrophilic-Anaerobic-Digestion (ISPAD) is a treatment system applicable to wastewaters stored for over 100 days, such as livestock wastes and municipal sludge. The ISPAD system differs from conventional reactors by being a sequentially fed batch process operating at a temperature fluctuating with ambient. The objective of this study was to develop a mathematical model to simulate the ISPAD process, verify the value of its microbial kinetics, and to simulate the pH evolution of its content along with its methane (CH<sub>4</sub>) production. Furthermore, the values of the ISPAD microbial kinetics were compared to that of previous years to track for further acclimation to psychrophilic conditions. Simulation of ISPAD was achieved using the Simulink/Matlab software. The model was calibrated using laboratory data obtained from batch experiments using 7-year-old ISPAD inoculum, and glucose as substrate, and where glucose, VFAs and pH changes were monitored along with biogas production. The ISPAD model showed good agreement with the experimental data representing the system behaviour between 4 and 35 ºC. Although microbial activity at 4 °C was much slower than that at 18 and 35 ºC, it showed acclimation to low temperatures. Furthermore, comparison of microbial kinetic values over 3 years of field ISPAD monitoring demonstrated continued population acclimation, especially for the methanogens.</p>

2015 ◽  
Vol 35 (5) ◽  
pp. 951-958 ◽  
Author(s):  
Deny Oliva-Merencio ◽  
Ileana Pereda-Reyes ◽  
Ulrike Schimpf ◽  
Stefan Koehler ◽  
Ariovaldo J. da Silva

ABSTRACT This paper studied the effect of adding an enzyme (ellulose) on anaerobic digestion of maize silage. We compared materials at chopping lengths of 8 mm (MSL), 4mm (MSS) and natural size (Ms) under a mesophilic and discontinuous operation (batch process). Hence, we found the process to be significantly influenced by particle size. Moreover, the ellulose addition did not significantly impact biogas production after a 35-day digestion period. Ms and MSS displayed an improved response to all variables when compared with MSL and MSL+C, with significant differences. Studies on the refractory fraction at infinite time (R0) have demonstrated that the lowest values correspond to Ms and MSS (0.122 and 0.155, respectively). The Kinetic approach and the Ultimate Biodegradability test are useful tools to evaluate the effect of the addition of an enzyme to the anaerobic process.


2016 ◽  
Vol 22 (1) ◽  
pp. 33-39 ◽  
Author(s):  
V. Sangeetha ◽  
V. Sivakumar

Sago processing industries generate a voluminous amount of wastewater with extremely high concentration of organic pollutants, resulting in water pollution. Anaerobic digestion has employed for reduction of COD and maximization of biogas production using synthetic sago wastewater by batch process. Mixed culture obtained from sago industry sludge was used as a source for microorganism. Response surface methodology was used to optimize the variables, such as pH, initial BOD, temperature and retention time. Statistical results were assessed with various descriptive, such as p value, lack of fit (F-test), coefficient of R2 determination, and adequate precision values. Pareto Analysis of Variance revealed that the coefficients of determination value (R2) of % COD removal, % BOD removal and biogas production were 0.994, 0.993 and 0.988. The optimum condition in which maximum COD removal (81.85%), BOD removal (91.61%) and biogas production of 99.4 ml/day was achieved at pH 7 with an initial BOD of 1374 mg/l, and with the retention time of 10 days at 32oC.


1995 ◽  
Vol 41 (13) ◽  
pp. 267-273 ◽  
Author(s):  
M. Meier-Schneiders ◽  
U. Grosshans ◽  
C. Busch ◽  
W. Weikmann ◽  
A. Steinbuchel

Improvements in the poly(β-hydroxybutyrate) (PHB) productivity of Alcaligenes eutrophus can be achieved by using genetically engineered strains. Knowledge of their metabolic regulation can be obtained from fermentation experiments. Certain events may not be noticed owing to the typically low frequency of sampling. To avoid information gaps, a newly developed fermenter-calorimeter was used for batch experiments allowing comprehensive on-line monitoring of fermentations. PHB-producing strain HI 6 and PHB-lacking mutant PHB−4 were selected, since they are well characterized with respect to the metabolism of PHB. For both strains, the profiles of thermograms, oxygen dissolved in the medium, and carbon dioxide formation were in good agreement with the off-line analysis. The on-line measurements showed characteristic differences between strains PHB−4 and H16. During fed-batch cultivations of PHB-accumulating strain H16, rapid autolysis of the cells was observed.Key words: Alcaligenes eutrophus, PHB, fermentation, calorimetry, on-line analysis, growth efficiency.


2013 ◽  
Vol 805-806 ◽  
pp. 219-222 ◽  
Author(s):  
Li Jun Wang ◽  
Hua Yong Zhang ◽  
Yong Lan Tian ◽  
Fang Juan Zhang

The effect of nickel ions on the anaerobic digestion ofphragmites australisand cow dung were investigated in batch experiments. Five levels of nickel ions were set as 0, 0.2, 0.8, 1.4 and 2.0 mg Ni/L. The results indicated that anaerobic digestion started on about 3rdday 26 days of anaerobic digestion, the highest cumulative biogas was 32.70 mL/g·TS-1when nickel concentration was 0.8 mg Ni/L. The nickel ions in certain concentration range significantly affected biogas production rate, and effectively shorten reactor startup period. Biogas which was produced fromphragmitescombined with cow dung provided a new insight for bioenergy production whose? process can be promoted by nickel ions addition.


Processes ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1313
Author(s):  
Philipp Levermann ◽  
Fabian Freiberger ◽  
Uma Katha ◽  
Henning Zaun ◽  
Johannes Möller ◽  
...  

For the fast and improved development of bioprocesses, new strategies are required where both strain and process development are performed in parallel. Here, a workflow based on a Nonlinear Model Predictive Control (NMPC) algorithm is described for the model-assisted development of biotechnological processes. By using the NMPC algorithm, the process is designed with respect to a target function (product yield, biomass concentration) with a drastically decreased number of experiments. A workflow for the usage of the NMPC algorithm as a process development tool is outlined. The NMPC algorithm is capable of improving various process states, such as product yield and biomass concentration. It uses on-line and at-line data and controls and optimizes the process by model-based process extrapolation. In this study, the algorithm is applied to a Corynebacterium glutamicum process. In conclusion, the potency of the NMPC algorithm as a powerful tool for process development is demonstrated. In particular, the benefits of the system regarding the characterization and optimization of a fed-batch process are outlined. With the NMPC algorithm, process development can be run simultaneously to strain development, resulting in a shortened time to market for novel products.


2015 ◽  
Vol 4 (2) ◽  
pp. 193 ◽  
Author(s):  
Mahsa Madani Hosseini ◽  
Catherine N. Mulligan ◽  
Suzelle Barrington

<p class="emsd">In-Storage-Psychrophilic-Anaerobic-Digestion (ISPAD) is a sequentially fed batch treatment system operating at a temperature fluctuating with that of ambient. Because of its specific operation modes and the acclimation of its microbial groups, its microbial kinetics were determined from laboratory data, and a specific mathematical model was developed to simulate its process and to optimize its management. The objective of this study is therefore to validate this ISPAD model using further laboratory data obtained from batch tests conducted in flasks. For this purpose, glucose at 630 mg/L, was fed to 8-year-old ISPAD inoculum and digested at 18 °C. Changes in glucose, VFAs and pH were monitored along with biogas production. The cross-validated coefficient of determination () was used to determine the fit between the model prediction and the experimental values. The ISPAD model was able to strongly predict glucose degradation, VFAs, pH, and methane. However, the model weakly predicted the early CO<sub>2</sub> changes over time, likely because of its water solubility. </p>


Author(s):  
Souhaib Zerrouki ◽  
Rachida Rihani ◽  
Karima Lekikot ◽  
Ibtissem Ramdhane

Abstract The aim of this study is to investigate the use of ultrasound pretreatment as potential technique to solubilize organic matter and fermentation of fruit juice effluents in anaerobic batch reactor. The efficacy of ultrasound pretreatment has been assessed at low frequency of 20 kHz and at different sonication times (20, 40 and 60 min). Compared with control, the amount of biogas produced increased by 47, 57 and 60% for sonication times of 20, 40 and 60 min, respectively. Methane content of the produced biogas was about 59% in the control and 64% in the case of effluent subjected to ultrasonic for 60 min. After 20 days of anaerobic digestion of the fruit juice effluents, the efficiency of COD increased by 9, 31 and 35% with respect to control for sonication times of 20, 40 and 60 min, respectively, corresponding to total sugars uptake efficiency of about 35, 51 and 54%, respectively. The modified Gompertz equation was used to describe the cumulative biogas production. A good agreement was found between simulated and experimental data.


2018 ◽  
Vol 12 (7) ◽  
pp. 580
Author(s):  
Antony P. Pallan ◽  
S. Antony Raja ◽  
C. G. Varma ◽  
Deepak Mathew D.K. ◽  
Anil K. S. ◽  
...  

2010 ◽  
Vol 9 (3) ◽  
pp. 313-318 ◽  
Author(s):  
Xavier Flotats ◽  
Jordi Palatsi ◽  
Belen Fernandez ◽  
M. Angels Colomer ◽  
Josep Illa

2020 ◽  
Vol 10 (3) ◽  
Author(s):  
Damaris Kerubo Oyaro ◽  
Zablon Isaboke Oonge ◽  
Patts Meshack Odira

Sign in / Sign up

Export Citation Format

Share Document