Study of Sierpinski Triangle Fractals Effect on the Atomic Numbers and the Atomic Weights of Elements in the Periodic Table

Author(s):  
Leila Hojatkashani
Author(s):  
R. Herrera ◽  
A. Gómez

Computer simulations of electron diffraction patterns and images are an essential step in the process of structure and/or defect elucidation. So far most programs are designed to deal specifically with crystals, requiring frequently the space group as imput parameter. In such programs the deviations from perfect periodicity are dealt with by means of “periodic continuation”.However, for many applications involving amorphous materials, quasiperiodic materials or simply crystals with defects (including finite shape effects) it is convenient to have an algorithm capable of handling non-periodicity. Our program “HeGo” is an implementation of the well known multislice equations in which no periodicity assumption is made whatsoever. The salient features of our implementation are: 1) We made Gaussian fits to the atomic scattering factors for electrons covering the whole periodic table and the ranges [0-2]Å−1 and [2-6]Å−1.


Author(s):  
Michael D. Gordin

Dmitrii Mendeleev (1834–1907) is a name we recognize, but perhaps only as the creator of the periodic table of elements. Generally, little else has been known about him. This book is an authoritative biography of Mendeleev that draws a multifaceted portrait of his life for the first time. As the book reveals, Mendeleev was not only a luminary in the history of science, he was also an astonishingly wide-ranging political and cultural figure. From his attack on Spiritualism to his failed voyage to the Arctic and his near-mythical hot-air balloon trip, this is the story of an extraordinary maverick. The ideals that shaped his work outside science also led Mendeleev to order the elements and, eventually, to engineer one of the most fascinating scientific developments of the nineteenth century. This book is a classic work that tells the story of one of the world's most important minds.


2018 ◽  
Author(s):  
Alexander Bolano
Keyword(s):  

Author(s):  
Alexander P. Khomyakov

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Khomyakov, A. P. (2001). The distribution of minerals in hyper-agpaitic rocks in terms of symmetry: evolution of views on the number and symmetry of minerals. Geology of Greenland Survey Bulletin, 190, 73-82. https://doi.org/10.34194/ggub.v190.5176 _______________ Among the unique mineral localities of the Earth the complexes of nepheline syenites with hyper-agpaitic differentiates are of special interest due to their extreme diversity of mineral species. The four best studied complexes of this type – Khibina, Lovozero, Ilímaussaq and Mont Saint-Hilaire – have yielded more than 700 mineral species of which about 200 are new. The great mineral diversity is due to the combination of several factors, the most important of which is the extremely high alkalinity of agpaitic magmas, causing about half of the elements of the periodic table to be concentrated together. Minerals from hyper-agpaitic rocks are characterised by the predominance of highly ordered, low-symmetry crystal structures resulting, in particular, from the markedly extended temperature range of crystallisation. Generalisation of available data for unique mineral localities underpins the hypothesis that there is no natural limit to the number of mineral species. It is predicted that by the middle of the 21st century, the overall number of minerals recorded in nature will exceed 10 000, with the proportion of triclinic species increasing from the present 9% to 14.5%, and that of cubic species decreasing from 10% to 5%.


Sign in / Sign up

Export Citation Format

Share Document