Study on Energy and Biofuels Generation from Biomass through Thermochemical Conversion Technologies

Author(s):  
Michael Tsatiris ◽  
Kiriaki Kitikidou
Fuel ◽  
2020 ◽  
Vol 279 ◽  
pp. 118536 ◽  
Author(s):  
Leonel J.R. Nunes ◽  
Liliana M.E.F. Loureiro ◽  
Letícia C.R. Sá ◽  
Hugo F.C. Silva

2019 ◽  
Vol 680 ◽  
pp. 105-123 ◽  
Author(s):  
Yi Herng Chan ◽  
Kin Wai Cheah ◽  
Bing Shen How ◽  
Adrian Chun Minh Loy ◽  
Muhammad Shahbaz ◽  
...  

2020 ◽  
Vol 10 (18) ◽  
pp. 6481 ◽  
Author(s):  
Leonel J. R. Nunes ◽  
Liliana M. E. F. Loureiro ◽  
Letícia C. R. Sá ◽  
Hugo F. C. Silva

The sugarcane industry has assumed an increasingly important role at a global level, with countries such as Brazil and India dominating the field. However, this causes environmental problems, since the industry produces large amounts of waste, such as sugarcane bagasse. This by-product, which is energetically partially recovered in sugar mills and in the pulp and paper industry, can make a significant contribution to the general use of biomass energy, if the usual disadvantages associated with products with low density and a high moisture content are overcome. From this perspective, thermochemical conversion technologies, especially torrefaction, are assumed to be capable of improving the fuel properties of this material, making it more appealing for potential export and use in far-off destinations. In this work, sugarcane samples were acquired, and the process of obtaining bagasse was simulated. Subsequently, the bagasse was dried and heat-treated at 200 and 300 °C to simulate the over-drying and torrefaction process. Afterward, product characterization was performed, including thermogravimetric analysis, elemental analysis, calorimetry, and energy densification. The results showed significant improvements in the energy content, from 18.17 to 33.36 MJ·kg−1 from dried bagasse to torrefied bagasse at 300 °C, showing that despite high mass loss, there is potential for a future value added chain for this waste form, since the increment in energy density could enhance its transportation and use in locations far off the production site.


2020 ◽  
Vol 10 (7) ◽  
pp. 2546 ◽  
Author(s):  
Leonel J.R. Nunes

The search for different forms of biomass that can be used as an alternative to those more traditional ones has faced numerous difficulties, namely those related to disadvantages that the majority of residual forms present. However, these residual forms of biomass also have advantages, namely the fact that, by being outside the usual biomass supply chains for energy, they are usually much cheaper, and therefore contribute to a significant reduction in production costs. To improve the less-favorable properties of these biomasses, thermochemical conversion technologies, namely torrefaction, are presented as a way to improve the combustibility of these materials. However, it is a technology that has not yet demonstrated its full potential, mainly due to difficulties in the process of scale-up and process control. In this article it is intended to present the experience obtained over 5 years in the operation of a biomass torrefaction plant with an industrial pilot scale, where all the difficulties encountered and how they were corrected are presented, until it became a fully operational plant. This article, in which a real case study is analyzed, presents in a descriptive way all the work done during the time from when the plant started up and during the commissioning period until the state of continuous operation had been reached.


Sign in / Sign up

Export Citation Format

Share Document