Effect of Shot Peening and Anodizing on Fatigue Crack Growth of Aircraft Material Al 7050-T7651: An Advance Study

Author(s):  
H. Ardianto ◽  
R. Yudhono ◽  
A. A. Erissonia
Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1267
Author(s):  
Chunguo Zhang ◽  
Weizhen Song ◽  
Qitao Wang ◽  
Wen Liu

From tensile overload to shot peening, there have been many attempts to extend the fatigue properties of metals. A key challenge with the cold work processes is that it is hard to avoid generation of harmful effects (e.g., the increase of surface roughness caused by shot peening). Pre-stress has a positive effect on improving the fatigue property of metals, and it is expected to strength Al-alloy without introducing adverse factors. Four pre-stresses ranged from 120 to 183 MPa were incorporated in four cracked extended-compact tension specimens by application of different load based on the measured stress–strain curve. Fatigue crack growth behavior and fractured characteristic of the pre-stressed specimens were investigated systematically and were compared with those of an as-received specimen. The results show that the pre-stress ranged from 120 to 183 MPa significantly improved the fatigue resistance of Al-alloy by comparison with that of the as-received specimen. With increasing pre-stress, the fatigue life first increases, then decrease, and the specimen with pre-stress of 158 MPa has the longest fatigue life. For the manner of pre-stress, no adverse factor was observed for increasing fatigue property, and the induced pre-stress reduced gradually till to disappear during subsequent fatigue cycling.


2005 ◽  
Vol 2 (6) ◽  
pp. 12569 ◽  
Author(s):  
T Honda ◽  
M Ramulu ◽  
AS Kobayashi

Author(s):  
Selim Gürgen ◽  
İsmail Saçkesen ◽  
Melih Cemal Kuşhan

Fatigue crack growth and corrosion are the two important failure mechanisms for aircraft structural components and, therefore, various treatments have been developed to improve the fatigue and corrosion resistance of aircraft materials. In the present study, thermo-mechanical and retrogression and re-aging treatments were applied to AA7075T7352 specimens, which were extracted from a nearly 40 years in-service F-4 Phantom component. The in-service component was selected in order to observe the influence of thermo-mechanical and retrogression and re-aging treatments on the properties of a used aircraft material and it was expected that the service life of the material is extended in the maintenance stage. In the experimental work, electrical, mechanical, fatigue crack growth, and corrosion tests were carried out using the specimens with T7352 (as-received), thermo-mechanical and retrogression and re-aging conditions. Based on the results, fatigue crack growth resistance of the material benefited from the thermo-mechanical and retrogression and re-aging treatments; however, both treatments lowered the corrosion resistance of the material.


Sign in / Sign up

Export Citation Format

Share Document